Differential metabolic pathways underlie THC- and CBD-mediated inhibition of B-cell activation in both young and aged mice
ObjectiveB lymphocytes play a crucial role in immunity but also contribute to the pathogenesis of various diseases. Cannabis plants produce numerous biologically active compounds,including cannabinoids. The two most studied phytocannabinoids are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). These cannabinoids exert diverse and potent biological effects primarily through the endocannabinoid system (ECS),which also plays a key role in mature B-cell function. Both the immune system and the ECS undergo age-related changes that lead to a clinically significant decline in function.MethodsThis study compares the effects of THC and CBD on B-cell activity in young and aged mice. Murine B lymphocytes were activated using lipopolysaccharide (LPS) and interleukin-4 (IL-4),and the impact of cannabinoid treatments was assessed in terms of cell phenotype,proliferation,antibody secretion,tumor necrosis factor-alpha (TNFα) secretion,extracellular signal-regulated kinase (ERK) phosphorylation,and the cellular metabolome.ResultsBoth THC and CBD exhibited dose-dependent inhibitory effects on B-cell activation in young and aged mice. However,we show here,for the first time,that the treatments induce distinct metabolic profiles. Although some metabolites,such as glucose-6-phosphate,pentose phosphate pathway (PPP) and nucleotide metabolites,were reduced by both cannabinoids,THC selectively reduced the levels of a distinct set of amino acids,while only CBD increased the levels of Citrulline and Allantoin. Additionally,the effects of THC and CBD differed between young and aged B cells,suggesting that age-related changes in the ECS may influence cannabinoid sensitivity.ConclusionsThese findings provide insights into the distinct mechanisms by which THC and CBD regulate immune activation and may open the door for investigating the mechanisms behind cannabinoids effects on the immune system. They also highlight the need for further research into phytocannabinoid-based therapies,particularly in age-specific contexts. Given the immunoregulatory properties of cannabinoids,especially CBD,tailored therapeutic strategies may enhance their clinical applications
View Publication
Goodrum F et al. (AUG 2004)
Blood 104 3 687--95
Differential outcomes of human cytomegalovirus infection in primitive hematopoietic cell subpopulations.
The cellular reservoir for latent human cytomegalovirus (HCMV) in the hematopoietic compartment,and the mechanisms governing a latent infection and reactivation from latency are unknown. Previous work has demonstrated that HCMV infects CD34+ progenitors and expresses a limited subset of viral genes. The outcome of HCMV infection may depend on the cell subpopulations infected within the heterogeneous CD34+ compartment. We compared HCMV infection in well-defined CD34+ cell subpopulations. HCMV infection inhibited hematopoietic colony formation from CD34+/CD38- but not CD34+/c-kit+ cells. CD34+/CD38- cells transiently expressed a large subset of HCMV genes that were not expressed in CD34+/c-kit+ cells or cells expressing more mature cell surface phenotypes. Although viral genomes were present in infected cells,viral gene expression was undetectable by 10 days after infection. Importantly,viral replication could be reactivated by coculture with permissive fibroblasts only from the CD34+/CD38- population. Strikingly,a subpopulation of CD34+/CD38- cells expressing a stem cell phenotype (lineage-/Thy-1+) supported a productive HCMV infection. These studies demonstrate that the outcome of HCMV infection in the hematopoietic compartment is dependent on the nature of the cell subpopulations infected and that CD34+/CD38- cells support an HCMV infection with the hallmarks of latency.
View Publication
Porayette P et al. (AUG 2009)
The Journal of Biological Chemistry 284 35 23806--17
Differential Processing of Amyloid-β Precursor Protein Directs Human Embryonic Stem Cell Proliferation and Differentiation into Neuronal Precursor Cells
The amyloid-beta precursor protein (AbetaPP) is a ubiquitously expressed transmembrane protein whose cleavage product,the amyloid-beta (Abeta) protein,is deposited in amyloid plaques in neurodegenerative conditions such as Alzheimer disease,Down syndrome,and head injury. We recently reported that this protein,normally associated with neurodegenerative conditions,is expressed by human embryonic stem cells (hESCs). We now report that the differential processing of AbetaPP via secretase enzymes regulates the proliferation and differentiation of hESCs. hESCs endogenously produce amyloid-beta,which when added exogenously in soluble and fibrillar forms but not oligomeric forms markedly increased hESC proliferation. The inhibition of AbetaPP cleavage by beta-secretase inhibitors significantly suppressed hESC proliferation and promoted nestin expression,an early marker of neural precursor cell (NPC) formation. The induction of NPC differentiation via the non-amyloidogenic pathway was confirmed by the addition of secreted AbetaPPalpha,which suppressed hESC proliferation and promoted the formation of NPCs. Together these data suggest that differential processing of AbetaPP is normally required for embryonic neurogenesis.
View Publication
L. Cao et al. (SEP 2018)
Nature communications 9 1 3693
Differential processing of HIV envelope glycans on the virus and soluble recombinant trimer.
As the sole target of broadly neutralizing antibodies (bnAbs) to HIV,the envelope glycoprotein (Env) trimer is the focus of vaccination strategies designed to elicit protective bnAbs in humans. Because HIV Env is densely glycosylated with 75-90 N-glycans per trimer,most bnAbs use or accommodate them in their binding epitope,making the glycosylation of recombinant Env a key aspect of HIV vaccine design. Upon analysis of three HIV strains,we here find that site-specific glycosylation of Env from infectious virus closely matches Envs from corresponding recombinant membrane-bound trimers. However,viral Envs differ significantly from recombinant soluble,cleaved (SOSIP) Env trimers,strongly impacting antigenicity. These results provide a benchmark for virus Env glycosylation needed for the design of soluble Env trimers as part of an overall HIV vaccine strategy.
View Publication
Bé et al. (JAN 2003)
Parasite immunology 25 1 39--44
Differential production in vitro of antigen specific IgG1, IgG3 and IgA: a study in Schistosoma haematobium infected individuals.
This study has evaluated the individual control of isotype production and the influence of external signals that can be experimentally provided in vitro,in antibody responses to two different recombinant Schistosoma antigens (Sh28GST and TPx-1). Peripheral blood mononuclear cells or enriched B cell fractions obtained from S. haematobium infected Senegalese adults were induced to terminal differentiation in vitro. The production of antibody to either antigen was donor-dependent and for each donor it was antigen-dependent. Differentiation to IgG1 and IgG3 production,and possibly IgA,specific to these conserved parasite antigens could be regulated differentially in vitro. Exogenous IL-2 and IL-10 or IL-10 and TGF-beta led to the production of specific IgG3 or IgG1 and/or IgA,respectively. This is the first report on such experimentally induced differential regulation of antigen-specific IgG1 and IgG3. This may have implications in designing protocols for protein based-vaccinations aiming at eliciting antibody responses of certain protective-type isotypes.
View Publication
Haniffa M et al. (FEB 2009)
The Journal of experimental medicine 206 2 371--85
Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation.
Animal models of hematopoietic stem cell transplantation have been used to analyze the turnover of bone marrow-derived cells and to demonstrate the critical role of recipient antigen-presenting cells (APC) in graft versus host disease (GVHD). In humans,the phenotype and lineage relationships of myeloid-derived tissue APC remain incompletely understood. It has also been proposed that the risk of acute GVHD,which extends over many months,is related to the protracted survival of certain recipient APC. Human dermis contains three principal subsets of CD45(+)HLA-DR(+) cells: CD1a(+)CD14(-) DC,CD1a(-)CD14(+) DC,and CD1a(-)CD14(+)FXIIIa(+) macrophages. In vitro,each subset has characteristic properties. After transplantation,both CD1a(+) and CD14(+) DC are rapidly depleted and replaced by donor cells,but recipient macrophages can be found in GVHD lesions and may persist for many months. Macrophages isolated from normal dermis secrete proinflammatory cytokines. Although they stimulate little proliferation of naive or memory CD4(+) T cells,macrophages induce cytokine expression in memory CD4(+) T cells and activation and proliferation of CD8(+) T cells. These observations suggest that dermal macrophages and DC are from distinct lineages and that persistent recipient macrophages,although unlikely to initiate alloreactivity,may contribute to GVHD by sustaining the responses of previously activated T cells.
View Publication
Sutherland HJ et al. (AUG 1991)
Blood 78 3 666--72
Differential regulation of primitive human hematopoietic cells in long-term cultures maintained on genetically engineered murine stromal cells.
Various growth factors are known to stimulate both early and late stages of human hematopoietic cell development in semisolid assay systems,but their role as microenvironmental regulators is poorly understood. To address this problem,we developed a novel coculture system in which highly purified primitive human hematopoietic cells were seeded onto an irradiated feeder layer of cells from a murine marrow-derived stromal cell line (M2-10B4) previously engineered by retroviral-mediated gene transfer to produce specific human factors. Effects on cells at very early,intermediate,and late stages of hematopoiesis were then evaluated by assessing the number of clonogenic cell precursors (long-term culture initiating cells [LTC-IC]),clonogenic cells,and mature granulocyte and macrophage progeny present in the cultures after 5 weeks. In the absence of any feeders,cells at all stages of hematopoiesis decreased to very low levels. In contrast,maintenance of LTC-IC was found to be supported by control murine stromal cells as effectively as by standard human marrow adherent layers. The presence of granulocyte colony-stimulating factor (G-CSF) and interleukin-3-producing M2-10B4 cells in combination was able to further enhance the maintenance and early differentiation of these cells without a decline in their proliferative potential as measured by the clonogenic output per LTC-IC. However,this effect was lost if granulocyte-macrophage CSF (GM-CSF)-producing feeders were also present. On the other hand,in the presence of GM-CSF-producing feeders,the output of mature granulocytes and macrophages increased 20-fold. These findings show that it is possible to selectively improve the maintenance of very primitive human hematopoietic cells in vitro or their output of mature progeny by appropriate manipulation of the long-term marrow culture system. Further exploitation of this approach should facilitate investigation of the mechanisms operative within the human marrow microenvironment in vivo and the design of protocols for in vitro manipulation of human marrow for future therapeutic applications.
View Publication
Kim YH et al. ( 2010)
Stem cells (Dayton,Ohio) 28 10 1816--1828
Differential regulation of proliferation and differentiation in neural precursor cells by the Jak pathway.
Neuronal precursor cells (NPCs) are temporally regulated and have the ability to proliferate and differentiate into mature neurons,oligodendrocytes,and astrocytes in the presence of growth factors (GFs). In the present study,the role of the Jak pathway in brain development was investigated in NPCs derived from neurosphere cultures using Jak2 and Jak3 small interfering RNAs and specific inhibitors. Jak2 inhibition profoundly decreased NPC proliferation,preventing further differentiation into neurons and glial cells. However,Jak3 inhibition induced neuronal differentiation accompanied by neurite growth. This phenomenon was due to the Jak3 inhibition-mediated induction of neurogenin (Ngn)2 and NeuroD in NPCs. Jak3 inhibition induced NPCs to differentiate into scattered neurons and increased the expression of Tuj1,microtubule associated protein 2 (MAP2),Olig2,and neuroglial protein (NG)2,but decreased glial fibrillary acidic protein (GFAP) expression,with predominant neurogenesis/polydendrogenesis compared with astrogliogenesis. Therefore,Jak2 may be important for NPC proliferation and maintenance,whereas knocking-down of Jak3 signaling is essential for NPC differentiation into neurons and oligodendrocytes but does not lead to astrocyte differentiation. These results suggest that NPC proliferation and differentiation are differentially regulated by the Jak pathway.
View Publication
(Nov 2024)
Viruses 16 11
Differential Replication and Oncolytic Effects of Zika Virus in Aggressive CNS Tumor Cells: Insights from Organoid and Tumoroid Models
Central nervous system (CNS) cancers are responsible for high rates of morbidity and mortality worldwide. Malignant CNS tumors such as adult Glioblastoma (GBM) and pediatric embryonal CNS tumors such as medulloblastoma (MED) and atypical teratoid rhabdoid tumors (ATRT) present relevant therapeutic challenges due to the lack of response to classic treatment regimens with radio and chemotherapy. Recent findings on the Zika virus’ (ZIKV) ability to infect and kill CNS neoplastic cells draw attention to the virus’ oncolytic potential. Studies demonstrating the safety of using ZIKV for treating malignant CNS tumors,enabling the translation of this approach to clinical trials,are scarce in the literature. Here we developed a co-culture model of mature human cerebral organoids assembled with GBM,MED or ATRT tumor cells and used these assembloids to test ZIKV oncolytic effect,replication potential and preferential targeting between normal and cancer cells. Our hybrid co-culture models allowed the tracking of tumor cell growth and invasion in cerebral organoids. ZIKV replication and ensuing accumulation in the culture medium was higher in organoids co-cultured with tumor cells than in isolated control organoids without tumor cells. ZIKV infection led to a significant reduction in tumor cell proportion in organoids with GBM and MED cells,but not with ATRT. Tumoroids (3D cultures of tumor cells alone) were efficiently infected by ZIKV. Interestingly,ZIKV rapidly replicated in GBM,MED,and ATRT tumoroids reaching significantly higher viral RNA accumulation levels than co-cultures. Moreover,ZIKV infection reduced viable cells number in MED and ATRT tumoroids but not in GBM tumoroids. Altogether,our findings indicate that ZIKV has greater replication rates in aggressive CNS tumor cells than in normal human cells comprising cerebral organoids. However,such higher ZIKV replication in tumor cells does not necessarily parallels oncolytic effects,suggesting cellular intrinsic and extrinsic factors mediating tumor cell death by ZIKV.
View Publication
Chun YW et al. (NOV 2015)
Journal of Biomechanics 48 14 3890--3896
Differential responses of induced pluripotent stem cell-derived cardiomyocytes to anisotropic strain depends on disease status
Primary dilated cardiomyopathy (DCM) is a non-ischemic heart disease with impaired pumping function of the heart. In this study,we used human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from a healthy volunteer and a primary DCM patient to investigate the impact of DCM on iPSC-CMs' responses to different types of anisotropic strain. A bioreactor system was established that generates cardiac-mimetic forces of 150 kPa at 5% anisotropic cyclic strain and 1. Hz frequency. After confirming cardiac induction of the iPSCs,it was determined that fibronectin was favorable to other extracellular matrix protein coatings (gelatin,laminin,vitronectin) in terms of viable cell area and density,and was therefore selected as the coating for further study. When iPSC-CMs were exposed to three strain conditions (no strain,5% static strain,and 5% cyclic strain),the static strain elicited significant induction of sarcomere components in comparison to other strain conditions. However,this induction occurred only in iPSC-CMs from a healthy volunteer (control iPSC-CMs")�
View Publication
Mertens J et al. (NOV 2015)
Nature 527 7576 95--99
Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder.
Bipolar disorder is a complex neuropsychiatric disorder that is characterized by intermittent episodes of mania and depression; without treatment,15% of patients commit suicide. Hence,it has been ranked by the World Health Organization as a top disorder of morbidity and lost productivity. Previous neuropathological studies have revealed a series of alterations in the brains of patients with bipolar disorder or animal models,such as reduced glial cell number in the prefrontal cortex of patients,upregulated activities of the protein kinase A and C pathways and changes in neurotransmission. However,the roles and causation of these changes in bipolar disorder have been too complex to exactly determine the pathology of the disease. Furthermore,although some patients show remarkable improvement with lithium treatment for yet unknown reasons,others are refractory to lithium treatment. Therefore,developing an accurate and powerful biological model for bipolar disorder has been a challenge. The introduction of induced pluripotent stem-cell (iPSC) technology has provided a new approach. Here we have developed an iPSC model for human bipolar disorder and investigated the cellular phenotypes of hippocampal dentate gyrus-like neurons derived from iPSCs of patients with bipolar disorder. Guided by RNA sequencing expression profiling,we have detected mitochondrial abnormalities in young neurons from patients with bipolar disorder by using mitochondrial assays; in addition,using both patch-clamp recording and somatic Ca(2+) imaging,we have observed hyperactive action-potential firing. This hyperexcitability phenotype of young neurons in bipolar disorder was selectively reversed by lithium treatment only in neurons derived from patients who also responded to lithium treatment. Therefore,hyperexcitability is one early endophenotype of bipolar disorder,and our model of iPSCs in this disease might be useful in developing new therapies and drugs aimed at its clinical treatment.
View Publication
Mahul-Mellier et al. (Aug 2025)
NPJ Parkinson's Disease 11
Differential role of C-terminal truncations on alpha-synuclein pathology and Lewy body formation
Alpha-synuclein (aSyn) post-translational modifications (PTM),especially phosphorylation at serine 129 and C-terminal truncations,are highly enriched in Lewy bodies (LB),Lewy neurites,and other pathological aggregates in Parkinson’s disease and synucleinopathies. However,the precise role of these PTM in pathology formation,neurodegeneration,and pathology spreading remains unclear. Here,we systematically investigated the role of post-fibrillization C-terminal aSyn truncations in regulating uptake,processing,seeding,and LB-like inclusion formation using a neuronal seeding model that recapitulates LB formation and neurodegeneration. We show that C-terminal cleavage of aSyn fibrils occurs rapidly post exogenous fibril internalization and during intracellular LB-like inclusion formation. Blocking cleavage of internalized fibrils does not affect seeding,but inhibiting enzymes such as calpains 1 and 2 alters LB-like inclusion formation. We show that C-terminal truncations,along with other PTMs,regulate fibril interactome remodeling,shortening,lateral association,and packing. These findings reveal distinct roles of C-terminal truncations at different aggregation stages on the pathway to LB formation,highlighting the need for consideration of stage‑specific strategies to target aSyn proteolytic cleavages.
View Publication