Felgentreff K et al. (JUN 2014)
Proceedings of the National Academy of Sciences of the United States of America 111 24 8889--94
Differential role of nonhomologous end joining factors in the generation, DNA damage response, and myeloid differentiation of human induced pluripotent stem cells.
Nonhomologous end-joining (NHEJ) is a key pathway for efficient repair of DNA double-strand breaks (DSBs) and V(D)J recombination. NHEJ defects in humans cause immunodeficiency and increased cellular sensitivity to ionizing irradiation (IR) and are variably associated with growth retardation,microcephaly,and neurodevelopmental delay. Repair of DNA DSBs is important for reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). To compare the specific contribution of DNA ligase 4 (LIG4),Artemis,and DNA-protein kinase catalytic subunit (PKcs) in this process and to gain insights into phenotypic variability associated with these disorders,we reprogrammed patient-derived fibroblast cell lines with NHEJ defects. Deficiencies of LIG4 and of DNA-PK catalytic activity,but not Artemis deficiency,were associated with markedly reduced reprogramming efficiency,which could be partially rescued by genetic complementation. Moreover,we identified increased genomic instability in LIG4-deficient iPSCs. Cell cycle synchronization revealed a severe defect of DNA repair and a G0/G1 cell cycle arrest,particularly in LIG4- and DNA-PK catalytically deficient iPSCs. Impaired myeloid differentiation was observed in LIG4-,but not Artemis- or DNA-PK-mutated iPSCs. These results indicate a critical importance of the NHEJ pathway for somatic cell reprogramming,with a major role for LIG4 and DNA-PKcs and a minor,if any,for Artemis.
View Publication
(Jun 2025)
Molecular Cancer 24 18
Differential susceptibility and role for senescence in CART cells based on costimulatory domains
Despite the success of chimeric antigen receptor T (CART) cell therapy in hematological malignancies,durable remissions remain low. Here,we report CART senescence as a potential resistance mechanism in 41BB-costimulated CART cell therapy. To mimic cancer relapse,we utilized an in vitro model with repeated CART cell activation cycles followed by rest periods. Using CD19-targeted CART cells with costimulation via 4-1BB-CD3ζ (BBζ) or CD28-CD3ζ (28ζ),we showed that CART cells undergo functional,phenotypical,and transcriptomic changes of senescence,which is more prominent in BBζ. We then utilized two additional independent strategies to induce senescence through MYC activation and irradiation. Induction of senescence impaired BBζ activity but improved 28ζ activity in preclinical studies. These findings were supported by analyses of independent patient data sets; senescence signatures in CART cell products were associated with non-response to BBζ but with improved clinical outcomes in 28ζ treatment. In summary,our study identifies senescence as a potential mechanism of failure predominantly in 41BB-costimulated CART cells.Supplementary InformationThe online version contains supplementary material available at 10.1186/s12943-025-02371-1. SignificanceWe identified senescence as a cause of failure in CART cell therapy,predominantly in 4-1BB-costimulated CART cells.Supplementary InformationThe online version contains supplementary material available at 10.1186/s12943-025-02371-1.
View Publication
A. V. Jeyachandran et al. (Aug 2025)
PLOS Pathogens 21 8
Differential tropisms of old and new world hantaviruses influence virulence and developing host-directed antiviral candidates
Hantaviruses are zoonotically transmitted from rodents to humans through the respiratory route,with no currently approved antivirals or widely available vaccines. The recent discovery of interhuman-transmitted Andes virus (ANDV) necessitates the systematic identification of cell tropism,infective potential,and potent therapeutic agents. We utilized human primary lung endothelial cells,various pluripotent stem cell-derived heart and brain cell types,and established human lung organoid models to evaluate the tropisms of Old World Hantaan (HTNV) and New World ANDV and Sin Nombre (SNV) viruses. ANDV exhibited broad tropism for all cell types assessed. SNV readily infected pulmonary endothelial cells,while HTNV robustly amplified in endothelial cells,cardiomyocytes,and astrocytes. We also provide the first evidence of hantaviral infection in human 3D distal lung organoids,which effectively modeled these differential tropisms. ANDV infection transcriptionally promoted cell injury and inflammatory responses,and downregulated lipid metabolic pathways in lung epithelial cells. Evaluation of selected drug candidates and pharmacotranscriptomics revealed that the host-directed small molecule compound urolithin B inhibited ANDV infection and restored cellular metabolism with minimal changes in host transcription. Given the scarcity of academic BSL-4 facilities that enable in vivo hantaviral studies,this investigation presents advanced human cell-based model systems that closely recapitulate host cell tropism and responses to infection,thereby providing critical platforms to evaluate potential antiviral drug candidates. Author summaryHantaviruses are fatal human pathogens that cause hemorrhagic fevers and are classified into either Old World or New World groups. Though most hantaviruses utilize zoonotic transmission,the New World Andes virus (ANDV) is unique in its ability to spread between humans. This distinct transmission mode underscores the need to investigate its cell tropism,pathogenicity,and therapeutic targets. Thus,we performed a systems-level comparison of the Old World Hantaan virus (HTNV) and New World hantaviruses,ANDV and Sin Nombre virus (SNV),using human lung,heart,and brain cell models,alongside lipidomic and transcriptomic profiling. We observed that ANDV exhibits broad tropism,infecting all tested cell types,including lung epithelial cells. HTNV replicated in lung endothelial,heart,and brain cells,whereas SNV replication was largely confined to lung endothelial cells. Notably,ANDV infection induced stronger host transcriptional changes,promoted cell injury and inflammatory responses,and suppressed lipid metabolic pathways in lung epithelial cells. Further drug testing and pharmacotranscriptomic analysis identified effective inhibitors of ANDV infection,including urolithin B,that restored cellular metabolism with minimal transcriptional disruption. This study provides a comparative framework for understanding hantavirus cell tropism and host responses and highlights potential antiviral candidates for treating these severe viral infections.
View Publication
O'Reilly D et al. (FEB 2013)
Genome Research 23 2 281--291
Differentially expressed, variant U1 snRNAs regulate gene expression in human cells
Human U1 small nuclear (sn)RNA,required for splicing of pre-mRNA,is encoded by genes on chromosome 1 (1p36). Imperfect copies of these U1 snRNA genes,also located on chromosome 1 (1q12-21),were thought to be pseudogenes. However,many of these variant" (v)U1 snRNA genes produce fully processed transcripts. Using antisense oligonucleotides to block the activity of a specific vU1 snRNA in HeLa cells�
View Publication
Chapman AG et al. (DEC 2014)
BMC genetics 15 1 89
Differentially methylated CpG island within human XIST mediates alternative P2 transcription and YY1 binding.
BackgroundX-chromosome inactivation silences one X chromosome in females to achieve dosage compensation with the single X chromosome in males. While most genes are silenced on the inactive X chromosome,the gene for the long non-coding RNA XIST is silenced on the active X chromosome and expressed from the inactive X chromosome with which the XIST RNA associates,triggering silencing of the chromosome. In mouse,an alternative Xist promoter,P2 is also the site of YY1 binding,which has been shown to serve as a tether between the Xist RNA and the DNA of the chromosome. In humans there are many differences from the initial events of mouse Xist activation,including absence of a functional antisense regulator Tsix,and absence of strictly paternal inactivation in extraembryonic tissues,prompting us to examine regulatory regions for the human XIST gene.ResultsWe demonstrate that the female-specific DNase hypersensitivity site within XIST is specific to the inactive X chromosome and correlates with transcription from an internal P2 promoter. P2 is located within a CpG island that is differentially methylated between males and females and overlaps conserved YY1 binding sites that are only bound on the inactive X chromosome where the sites are unmethylated. However,YY1 binding is insufficient to drive P2 expression or establish the DHS,which may require a development-specific factor. Furthermore,reduction of YY1 reduces XIST transcription in addition to causing delocalization of XIST.ConclusionsThe differentially methylated DNase hypersensitive site within XIST marks the location of an alternative promoter,P2,that generates a transcript of unknown function as it lacks the A repeats that are critical for silencing. In addition,this region binds YY1 on the unmethylated inactive X chromosome,and depletion of YY1 untethers the XIST RNA as well as decreasing transcription of XIST.
View Publication
Stebbins MJ et al. (MAY 2016)
Methods (San Diego,Calif.) 101 93--102
Differentiation and characterization of human pluripotent stem cell-derived brain microvascular endothelial cells.
The blood-brain barrier (BBB) is a critical component of the central nervous system (CNS) that regulates the flux of material between the blood and the brain. Because of its barrier properties,the BBB creates a bottleneck to CNS drug delivery. Human in vitro BBB models offer a potential tool to screen pharmaceutical libraries for CNS penetration as well as for BBB modulators in development and disease,yet primary and immortalized models respectively lack scalability and robust phenotypes. Recently,in vitro BBB models derived from human pluripotent stem cells (hPSCs) have helped overcome these challenges by providing a scalable and renewable source of human brain microvascular endothelial cells (BMECs). We have demonstrated that hPSC-derived BMECs exhibit robust structural and functional characteristics reminiscent of the in vivo BBB. Here,we provide a detailed description of the methods required to differentiate and functionally characterize hPSC-derived BMECs to facilitate their widespread use in downstream applications.
View Publication
X. Cao et al. (jun 2019)
Stem cell reports 12 6 1282--1297
Differentiation and Functional Comparison of Monocytes and Macrophages from hiPSCs with Peripheral Blood Derivatives.
A renewable source of human monocytes and macrophages would be a valuable alternative to primary cells from peripheral blood (PB) in biomedical research. We developed an efficient protocol to derive monocytes and macrophages from human induced pluripotent stem cells (hiPSCs) and performed a functional comparison with PB-derived cells. hiPSC-derived monocytes were functional after cryopreservation and exhibited gene expression profiles comparable with PB-derived monocytes. Notably,hiPSC-derived monocytes were more activated with greater adhesion to endothelial cells under physiological flow. hiPSC-derived monocytes were successfully polarized to M1 and M2 macrophage subtypes,which showed similar pan- and subtype-specific gene and surface protein expression and cytokine secretion to PB-derived macrophages. hiPSC-derived macrophages exhibited higher endocytosis and efferocytosis and similar bacterial and tumor cell phagocytosis to PB-derived macrophages. In summary,we developed a robust protocol to generate hiPSC monocytes and macrophages from independent hiPSC lines that showed aspects of functional maturity comparable with those from PB.
View Publication
Brzeszczynska J et al. (JUN 2014)
International journal of molecular medicine 33 6 1597--1606
Differentiation and molecular profiling of human embryonic stem cell-derived corneal epithelial cells
It has been suggested that the isolation of scalable populations of limbal stem cells may lead to radical changes in ocular therapy. In particular,the derivation and transplantation of corneal stem cells from these populations may result in therapies providing clinical normality of the diseased or damaged cornea. Although feasible in theory,the lack of donor material in sufficient quantity and quality currently limits such a strategy. A potential scalable source of corneal cells could be derived from pluripotent stem cells (PSCs). We developed an in vitro and serum-free corneal differentiation model which displays significant promise. Our stepwise differentiation model was designed with reference to development and gave rise to cells which displayed similarities to epithelial progenitor cells which can be specified to cells displaying a corneal epithelial phenotype. We believe our approach is novel,provides a robust model of human development and in the future,may facilitate the generation of corneal epithelial cells that are suitable for clinical use. Additionally,we demonstrate that following continued cell culture,stem cell-derived corneal epithelial cells undergo transdifferentiation and exhibit squamous metaplasia and therefore,also offer an in vitro model of disease.
View Publication
Zhou X et al. (AUG 2010)
Immunity 33 2 229--40
Differentiation and persistence of memory CD8(+) T cells depend on T cell factor 1.
T cell factor 1 (TCF-1) is a transcription factor known to act downstream of the canonical Wnt pathway and is essential for normal T cell development. However,its physiological roles in mature CD8(+) T cell responses are unknown. Here we showed that TCF-1 deficiency limited proliferation of CD8(+) effector T cells and impaired their differentiation toward a central memory phenotype. Moreover,TCF-1-deficient memory CD8(+) T cells were progressively lost over time,exhibiting reduced expression of the antiapoptotic molecule Bcl-2 and interleukin-2 receptor beta chain and diminished IL-15-driven proliferation. TCF-1 was directly associated with the Eomes allele and the Wnt-TCF-1 pathway was necessary and sufficient for optimal Eomes expression in naive and memory CD8(+) T cells. Importantly,forced expression of Eomes partly protected TCF-1-deficient memory CD8(+) T cells from time-dependent attrition. Our studies thus identify TCF-1 as a critical player in a transcriptional program that regulates memory CD8 differentiation and longevity.
View Publication
(Jun 2025)
CNS Neuroscience & Therapeutics 31 6
Differentiation Defect Into GABAergic Neurons in Cerebral Organoids From Autism Patients
ABSTRACTObjectivesAutism spectrum disorder (ASD) is a neurodevelopmental condition that affects social communication and behaviors. While previous studies using animal models have substantially expanded our knowledge about ASD,the lack of an appropriate human model system that accurately recapitulates the human?specific pathophysiology of ASD hinders the precise understanding of its etiology and the development of effective therapies. This study aims to replicate pathological phenotypes in cerebral organoids derived from idiopathic ASD patients and to conduct proof?of?concept research for the development of ASD therapeutics.MethodsWe conducted an in vitro disease modeling study using cerebral organoids derived from three idiopathic ASD patients. Additionally,we performed organoid?based phenotypic drug screening to identify potential therapeutic compounds that could ameliorate the phenotypes observed in cerebral organoids derived from idiopathic ASD patients.ResultsHere we show that cerebral organoids derived from idiopathic ASD patients display malformation of the ventricular zones and impaired early neuronal differentiation. Through organoid?based phenotypic drug screening,we successfully generated cerebral organoids with normal tissue architecture in which the delayed neuronal differentiation could also be accelerated. Notably,cerebral organoids from ASD patients exhibited a reduced number of GABAergic neurons compared to healthy controls,resulting in an imbalance in the excitatory and inhibitory neuron ratio. The differentiation defects into GABAergic neurons in patient?derived cerebral organoids could be rescued by treating with either IGF1 or Gabapentin,a GABA agonist.ConclusionsOur findings provide a framework for utilizing patient?derived cerebral organoids in the development of personalized pharmaceutical treatment for ASD. Summary of in vitro disease modeling and drug screening using ASD patient?derived COs. This figure highlights the major phenotypes observed in COASD and the therapeutic effects of each compound screened in this study.
View Publication
E. Berenice Mart\'inez-Shio et al. (may 2022)
Clinical and experimental immunology 208 1 83--94
Differentiation of circulating monocytes into macrophages with metabolically activated phenotype regulates inflammation in dyslipidemia patients.
Macrophages are mediators of inflammation having an important role in the pathogenesis of cardiovascular diseases. Recently,a pro-inflammatory subpopulation,known as metabolically activated macrophages (MMe),has been described in conditions of obesity and metabolic syndrome where they are known to release cytokines that can promote insulin resistance. Dyslipidemia represents an important feature in metabolic syndrome and corresponds to one of the main modifiable risk factors for the development of cardiovascular diseases. Circulating monocytes can differentiate into macrophages under certain conditions. They correspond to a heterogeneous population,which include inflammatory and anti-inflammatory subsets; however,there is a wide spectrum of phenotypes. Therefore,we decided to investigate whether the metabolic activated monocyte (MoMe) subpopulation is already present under dyslipidemia conditions. Secondly,we assessed whether different levels of cholesterol and triglycerides play a role in the polarization towards the metabolic phenotype (MMe) of macrophages. Our results indicate that MoMe cells are found in both healthy and dyslipidemia patients,with cells displaying the following metabolic phenotype: CD14varCD36+ABCA1+PLIN2+. Furthermore,the percentages of CD14++CD68+CD80+ pro-inflammatory monocytes are higher in dyslipidemia than in healthy subjects. When analysing macrophage differentiation,we observed that MMe percentages were higher in the dyslipidemia group than in healthy subjects. These MMe have the ability to produce high levels of IL-6 and the anti-inflammatory cytokine IL-10. Furthermore,ABCA1 expression in MMe correlates with LDL serum levels. Our study highlights the dynamic contributions of metabolically activated macrophages in dyslipidemia,which may have a complex participation in low-grade inflammation due to their pro- and anti-inflammatory function.
View Publication
Bagutti C et al. (OCT 1996)
Developmental biology 179 1 184--96
Differentiation of embryonal stem cells into keratinocytes: comparison of wild-type and beta 1 integrin-deficient cells.
beta 1 Integrins are known to regulate terminal differentiation and morphogenesis in the adult epidermis. We have investigated their role in the embryonic development of keratinocytes by comparing the differentiation of wild-type and beta 1-null mouse embryonal stem (ES) cells. By 12-15 days in culture,differentiation of embryonic or simple epithelial cells occurred in both ES cell populations,as detected by expression of keratins 8,18,and 19. From 21 days,expression of keratins 10 and 14 and of the cornified envelope precursor involucrin indicated that some of the wild-type cells had differentiated into keratinocytes. In contrast,keratinocyte markers were not expressed in beta 1-null cultures. The beta 1-null cells failed to express the alpha 2 and alpha 3 integrin subunits on the cell surface,consistent with the association of these a subunits with beta 1. Furthermore,alpha 6 and beta 4 expression was reduced in the beta 1-null cultures. Although beta 1-null ES cells failed to undergo differentiation into keratinocytes in vitro,they did form keratinocyte cysts expressing alpha 6 beta 4,keratins 1 and 14,and involucrin when allowed to form teratomas by subcutaneous injection in mice; furthermore,beta 1-null keratinocytes were found in the epidermis of a wild-type/beta 1-null chimeric mouse. As judged by immunofluorescence microscopy,extracellular matrix assembly was severely impaired in beta 1-null ES cell cultures,but not in the teratomas or chimeric mouse skin. We therefore speculate that the failure of beta 1-null cells to differentiate into keratinocytes in vitro may reflect an inability to assemble a basement membrane.
View Publication