Shen W et al. (OCT 2015)
Journal of virology 89 19 10097--10109
Identification and Functional Analysis of Novel Nonstructural Proteins of Human Bocavirus 1.
UNLABELLED: Human bocavirus 1 (HBoV1) is a single-stranded DNA parvovirus that causes lower respiratory tract infections in young children worldwide. In this study,we identified novel splice acceptor and donor sites,namely,A1' and D1',in the large nonstructural protein (NS1)-encoding region of the HBoV1 precursor mRNA. The novel small NS proteins (NS2,NS3,and NS4) were confirmed to be expressed following transfection of an HBoV1 infectious proviral plasmid and viral infection of polarized human airway epithelium cultured at an air-liquid interface (HAE-ALI). We constructed mutant pIHBoV1 infectious plasmids which harbor silent mutations (sm) smA1' and smD1' at the A1' and D1' splice sites,respectively. The mutant infectious plasmids maintained production of HBoV1 progeny virions at levels less than five times lower than that of the wild-type plasmid. Importantly,the smA1' mutant virus that does not express NS3 and NS4 replicated in HAE-ALI as effectively as the wild-type virus; however,the smD1' mutant virus that does not express NS2 and NS4 underwent an abortive infection in HAE-ALI. Thus,our study identified three novel NS proteins,NS2,NS3,and NS4,and suggests an important function of the NS2 protein in HBoV1 replication in HAE-ALI. IMPORTANCE: Human bocavirus 1 infection causes respiratory diseases,including acute wheezing in infants,of which life-threatening cases have been reported. In vitro,human bocavirus 1 infects polarized human bronchial airway epithelium cultured at an air-liquid interface that mimics the environment of human lower respiratory airways. Viral nonstructural proteins are often important for virus replication and pathogenesis in infected tissues or cells. In this report,we identified three new nonstructural proteins of human bocavirus 1 that are expressed during infection of polarized human bronchial airway epithelium. Among them,we proved that one nonstructural protein is critical to the replication of the virus in polarized human bronchial airway epithelium. The creation of nonreplicating infectious HBoV1 mutants may have particular utility in vaccine development for this virus.
View Publication
Reference
Schumann K et al. (AUG 2015)
Proceedings of the National Academy of Sciences of the United States of America 112 33 10437--42
Generation of knock-in primary human T cells using Cas9 ribonucleoproteins.
T-cell genome engineering holds great promise for cell-based therapies for cancer,HIV,primary immune deficiencies,and autoimmune diseases,but genetic manipulation of human T cells has been challenging. Improved tools are needed to efficiently knock out" genes and "knock in" targeted genome modifications to modulate T-cell function and correct disease-associated mutations. CRISPR/Cas9 technology is facilitating genome engineering in many cell types�
View Publication
Reference
Link AS et al. (AUG 2016)
Molecular neurobiology 53 6 4210--4225
Kdm6b and Pmepa1 as Targets of Bioelectrically and Behaviorally Induced Activin A Signaling.
The transforming growth factor-$\$(TGF-$\$) family member activin A exerts multiple neurotrophic and protective effects in the brain. Activin also modulates cognitive functions and affective behavior and is a presumed target of antidepressant therapy. Despite its important role in the injured and intact brain,the mechanisms underlying activin effects in the CNS are still largely unknown. Our goal was to identify the first target genes of activin signaling in the hippocampus in vivo. Electroconvulsive seizures,a rodent model of electroconvulsive therapy in humans,were applied to C57BL/6J mice to elicit a strong increase in activin A signaling. Chromatin immunoprecipitation experiments with hippocampal lysates subsequently revealed that binding of SMAD2/3,the intracellular effectors of activin signaling,was significantly enriched at the Pmepa1 gene,which encodes a negative feedback regulator of TGF-$\$ in cancer cells,and at the Kdm6b gene,which encodes an epigenetic regulator promoting transcriptional plasticity. Underlining the significance of these findings,activin treatment also induced PMEPA1 and KDM6B expression in human forebrain neurons generated from embryonic stem cells suggesting interspecies conservation of activin effects in mammalian neurons. Importantly,physiological stimuli such as provided by environmental enrichment proved already sufficient to engender a rapid and significant induction of activin signaling concomitant with an upregulation of Pmepa1 and Kdm6b expression. Taken together,our study identified the first target genes of activin signaling in the brain. With the induction of Kdm6b expression,activin is likely to gain impact on a presumed epigenetic regulator of activity-dependent neuronal plasticity.
View Publication
Reference
Liang D et al. ( 2015)
Endocrine journal 62 10 907--920
Embryonic stem cell-derived pancreatic endoderm transplant with MCT1-suppressing miR-495 attenuates type II diabetes in mice.
Type 2 diabetes mellitus (T2D) is a chronic metabolic disorder resulting from defects in both insulin secretion and insulin activity. The deficit and dysfunction of insulin secreting $\$-cells are signature symptoms of T2D. Additionally,in pancreatic $\$-cells,a small group of genes that are abundantly expressed in most other tissues is highly selectively repressed. Monocarboxylate transporter 1 (MCT1) is one of these genes. In this study,we identified an MCT1-suppressing microRNA (hsa-miR-495) and used this microRNA together with human embryonic stem cell (hESC) derived pancreatic endoderm (PE) cells transplanted into a high-fat diet induced T2D mouse model. Glucose metabolism significantly improved and other symptoms of T2D were attenuated after the procedure. Our findings support the potential for T2D treatment using the combination of microRNA and hESC differentiated PE cells.
View Publication
Reference
Carvalho JL et al. (NOV 2012)
Journal of tissue science & engineering Suppl 11 002
Characterization of Decellularized Heart Matrices as Biomaterials for Regular and Whole Organ Tissue Engineering and Initial In-vitro Recellularization with Ips Cells.
Tissue engineering strategies,based on solid/porous scaffolds,suffer from several limitations,such as ineffective vascularization,poor cell distribution and organization within scaffold,in addition to low final cell density,among others. Therefore,the search for other tissue engineering approaches constitutes an active area of investigation. Decellularized matrices (DM) present major advantages compared to solid scaffolds,such as ideal chemical composition,the preservation of vascularization structure and perfect three-dimensional structure. In the present study,we aimed to characterize and investigate murine heart decellularized matrices as biomaterials for regular and whole organ tissue engineering. Heart decellularized matrices were characterized according to: 1. DNA content,through DNA quantificationo and PCR of isolated genomic DNA; 2. Histological structure,assessed after Hematoxylin and Eosin,as well as Masson's Trichrome stainings; 3. Surface nanostructure analysis,performed,using SEM. Those essays allowed us to conclude that DM was indeed decellularized,with preserved extracellular matrix structure. Following characterization,decellularized heart slices were seeded with induced Pluripotent Stem cells (iPS). As expected,but - to the best of our knowledge - never shown before,decellularization of murine heart matrices maintained matrix biocompatibility,as iPS cells rapidly attached to the surface of the material and proliferated. Strikingly though,heart DM presented a differentiation induction effect over those cells,which lost their pluripotency markers after 7 days of culture in the DM. Such loss of differentiation markers was observed,even though bFGF containing media mTSR was used during such period. Gene expression of iPS cells cultured on DM will be further analyzed,in order to assess the effects of culturing pluripotent stem cells in decellularized heart matrices.
View Publication
Reference
Du L et al. (MAY 2016)
Journal of applied toxicology : JAT 36 5 659--668
BDE-209 inhibits pluripotent genes expression and induces apoptosis in human embryonic stem cells.
Decabromodiphenyl ether (BDE-209) has been detected in human serum,semen,placenta,cord blood and milk worldwide. However,little is known regarding the potential effects on the early human embryonic development of BDE-209. In this study,human embryonic stem cell lines FY-hES-10 and FY-hES-26 were used to evaluate the potential effects and explore the toxification mechanisms using low-level BDE-209 exposure. Our data showed that BDE-209 exposure (1,10 and 100 nM) reduced the expression of pluripotent genes such as OCT4,SOX2 and NANOG and induced human embryonic stem cells (hESCs) apoptosis. The downregulation of BIRC5/BCL2 and upregulation of BAX were related to apoptosis of hESCs induced by BDE-209 exposure. A mechanism study showed that OCT4 down-regulation accompanied by OCT4 promoter hypermethylation and increasing miR-145/miR-335 levels,OCT4 inhibitors. Moreover,BDE-209 could increase the generation of intracellular reactive oxygen species (ROS) and decrease SOD2 expression. The ROS increase and OCT4 downregulation after BDE-209 exposure could be reversed partly by antioxidant N-acetylcysteine supplement. These findings showed that BDE-209 exposure could decrease pluripotent genes expression via epigenetic regulation and induce apoptosis through ROS generation in human embryonic stem cells in vitro.
View Publication
Reference
Huang X et al. (JAN 2016)
Leukemia 30 1 144--53
Activation of OCT4 enhances ex vivo expansion of human cord blood hematopoietic stem and progenitor cells by regulating HOXB4 expression.
Although hematopoietic stem cells (HSC) are the best characterized and the most clinically used adult stem cells,efforts are still needed to understand how to best ex vivo expand these cells. Here we present our unexpected finding that OCT4 is involved in the enhancement of cytokine-induced expansion capabilities of human cord blood (CB) HSC. Activation of OCT4 by Oct4-activating compound 1 (OAC1) in CB CD34(+) cells enhanced ex vivo expansion of HSC,as determined by a rigorously defined set of markers for human HSC,and in vivo short-term and long-term repopulating ability in NSG mice. Limiting dilution analysis revealed that OAC1 treatment resulted in 3.5-fold increase in the number of SCID repopulating cells (SRCs) compared with that in day 0 uncultured CD34(+) cells and 6.3-fold increase compared with that in cells treated with control vehicle. Hematopoietic progenitor cells,as assessed by in vitro colony formation,were also enhanced. Furthermore,we showed that OAC1 treatment led to OCT4-mediated upregulation of HOXB4. Consistently,siRNA-mediated knockdown of HOXB4 expression suppressed effects of OAC1 on ex vivo expansion of HSC. Our study has identified the OCT4-HOXB4 axis in ex vivo expansion of human CB HSC.
View Publication
Reference
Nayak RC et al. (AUG 2015)
The Journal of clinical investigation 125 8 3103--3116
Pathogenesis of ELANE-mutant severe neutropenia revealed by induced pluripotent stem cells.
Severe congenital neutropenia (SCN) is often associated with inherited heterozygous point mutations in ELANE,which encodes neutrophil elastase (NE). However,a lack of appropriate models to recapitulate SCN has substantially hampered the understanding of the genetic etiology and pathobiology of this disease. To this end,we generated both normal and SCN patient-derived induced pluripotent stem cells (iPSCs),and performed genome editing and differentiation protocols that recapitulate the major features of granulopoiesis. Pathogenesis of ELANE point mutations was the result of promyelocyte death and differentiation arrest,and was associated with NE mislocalization and activation of the unfolded protein response/ER stress (UPR/ER stress). Similarly,high-dose G-CSF (or downstream signaling through AKT/BCL2) rescues the dysgranulopoietic defect in SCN patient-derived iPSCs through C/EBP$$-dependent emergency granulopoiesis. In contrast,sivelestat,an NE-specific small-molecule inhibitor,corrected dysgranulopoiesis by restoring normal intracellular NE localization in primary granules; ameliorating UPR/ER stress; increasing expression of CEBPA,but not CEBPB; and promoting promyelocyte survival and differentiation. Together,these data suggest that SCN disease pathogenesis includes NE mislocalization,which in turn triggers dysfunctional survival signaling and UPR/ER stress. This paradigm has the potential to be clinically exploited to achieve therapeutic responses using lower doses of G-CSF combined with targeting to correct NE mislocalization.
View Publication
Reference
Guan X et al. (JUL 2015)
Human gene therapy. Clinical development 150715074418003
Use of adeno-associated virus to enrich cardiomyocytes derived from human stem cells.
Cardiomyocytes derived from human induced pluripotent stem cells (iPSC) show great promise as autologous donor cells to treat heart disease. A major technical obstacle to this approach is that available induction methods often produce heterogeneous cell population with low percentage of cardiomyocytes. Here we describe a cardiac enrichment approach using non-integrating adeno-associated virus (AAV). We first examined several AAV serotypes for their ability to selectively transduce iPSC-derived cardiomyocytes. Result showed that AAV1 demonstrated the highest in vitro transduction efficiency among seven widely used serotypes. Next differentiated iPSC derivatives were transduced with drug-selectable AAV1 expressing neomycin resistance gene. Selection with G418 enriched the cardiac cell fraction from 27% to 57% in two weeks. Compared to other enrichment strategies such as integrative genetic selection,mitochondria labeling or surface marker cell sorting,this simple AAV method described herein bypasses antibody or dye labeling. These findings provide proof-of-concept for large-scale cardiomyocyte enrichment by exploiting AAV's intrinsic tissue tropism.
View Publication
Reference
Ma Z et al. (JUL 2015)
Nature communications 6 May 7413
Self-organizing human cardiac microchambers mediated by geometric confinement.
Tissue morphogenesis and organ formation are the consequences of biochemical and biophysical cues that lead to cellular spatial patterning in development. To model such events in vitro,we use PEG-patterned substrates to geometrically confine human pluripotent stem cell colonies and spatially present mechanical stress. Modulation of the WNT/β-catenin pathway promotes spatial patterning via geometric confinement of the cell condensation process during epithelial-mesenchymal transition,forcing cells at the perimeter to express an OCT4+ annulus,which is coincident with a region of higher cell density and E-cadherin expression. The biochemical and biophysical cues synergistically induce self-organizing lineage specification and creation of a beating human cardiac microchamber confined by the pattern geometry. These highly defined human cardiac microchambers can be used to study aspects of embryonic spatial patterning,early cardiac development and drug-induced developmental toxicity.
View Publication
Reference
Jiang B et al. (OCT 2015)
Biomaterials 65 103--114
Generation of cardiac spheres from primate pluripotent stem cells in a small molecule-based 3D system.
Pluripotent stem cell (PSC) usage in heart regenerative medicine requires producing enriched cardiomyocytes (CMs) with mature phenotypes in a defined medium. However,current methods are typically performed in 2D environments that produce immature CMs. Here we report a simple,growth factor-free 3D culture system to rapidly and efficiently generate 85.07 ± 1.8% of spontaneously contractile cardiac spheres (scCDSs) using 3D-cultured human and monkey PSC-spheres. Along with small molecule-based 3D induction,this protocol produces CDSs of up to 95.7% CMs at a yield of up to 237 CMs for every input pluripotent cell,is effective for human and monkey PSCs,and maintains 81.03 ± 12.43% of CDSs in spontaneous contractibility for over three months. These CDSs displayed CM ultrastructure,calcium transient,appropriate pharmacological responses and CM gene expression profiles specific for maturity. Furthermore,3D-derived CMs displayed more mature phenotypes than those from a parallel 2D-culture. The system is compatible to large-scaly produce CMs for disease study,cell therapy and pharmaceutics screening.
View Publication
Reference
Zizzari IG et al. ( 2015)
PLoS One 10 7 e0132617
The Macrophage Galactose-Type C-Type Lectin (MGL) Modulates Regulatory T Cell Functions
Regulatory T cells (Tregs) are physiologically designed to prevent autoimmune disease and maintain self-tolerance. In tumour microenvironments,their presence is related to a poor prognosis,and they influence the therapeutic outcome due to their capacity to suppress the immune response by cell-cell contact and to release immunosuppressive cytokines. In this study,we demonstrate that Treg immunosuppressive activity can be modulated by the cross-linking between the CD45RA expressed by Tregs and the C-type lectin MGL. This specific interaction strongly decreases the immunosuppressive activity of Tregs,restoring the proliferative capacity of co-cultured T lymphocytes. This effect can be attributed to changes in CD45RA and TCR signalling through the inhibition of Lck and inactivation of Zap-70,an increase in the Foxp3 methylation status and,ultimately,the reduced production of suppressive cytokines. These results indicate a role of MGL as an immunomodulator within the tumour microenvironment interfering with Treg functions,suggesting its possible use in the design of anticancer vaccines.
View Publication