Pardo-Saganta A et al. (JUL 2015)
Nature 523 7562 597--601
Parent stem cells can serve as niches for their daughter cells.
Stem cells integrate inputs from multiple sources. Stem cell niches provide signals that promote stem cell maintenance,while differentiated daughter cells are known to provide feedback signals to regulate stem cell replication and differentiation. Recently,stem cells have been shown to regulate themselves using an autocrine mechanism. The existence of a 'stem cell niche' was first postulated by Schofield in 1978 to define local environments necessary for the maintenance of haematopoietic stem cells. Since then,an increasing body of work has focused on defining stem cell niches. Yet little is known about how progenitor cell and differentiated cell numbers and proportions are maintained. In the airway epithelium,basal cells function as stem/progenitor cells that can both self-renew and produce differentiated secretory cells and ciliated cells. Secretory cells also act as transit-amplifying cells that eventually differentiate into post-mitotic ciliated cells . Here we describe a mode of cell regulation in which adult mammalian stem/progenitor cells relay a forward signal to their own progeny. Surprisingly,this forward signal is shown to be necessary for daughter cell maintenance. Using a combination of cell ablation,lineage tracing and signalling pathway modulation,we show that airway basal stem/progenitor cells continuously supply a Notch ligand to their daughter secretory cells. Without these forward signals,the secretory progenitor cell pool fails to be maintained and secretory cells execute a terminal differentiation program and convert into ciliated cells. Thus,a parent stem/progenitor cell can serve as a functional daughter cell niche.
View Publication
Reference
Lee S-K et al. (MAR 2015)
EBioMedicine 2 3 225--33
Response of Neutrophils to Extracellular Haemoglobin and LTA in Human Blood System.
BACKGROUND Haemolytic infection lyses red blood cells,releasing haemoglobin (Hb) into the plasma. Although recent studies showed that immune cells recognize redox-active cytotoxic extracellular Hb (metHb) bound to pathogen-associated molecular patterns (PAMPs),currently available information is limited to experiments performed in defined conditions using single cell lines. Therefore,a systemic approach targeting primary whole blood cells is required to better understand the cellular immune defence against metHb and PAMPs,when under a haemolytic infection. METHODS We investigated how human white blood cells,including neutrophils,respond to metHb and lipoteichoic acid (LTA) by measuring reactive oxygen species (ROS),signalling mediators (ERK and p38),NF-κB,cytokines,elastase secretion and cell activation markers. FINDINGS metHb activates NF-κB in TLR2-expressing HEK293 cells but not in normal or TLR9-expressing HEK293 cells. Treatment of isolated neutrophils with metHb increased production of ROS and expressions of IL-8,TNFα,and CD11b,which were further enhanced by metHb + LTA complex. While LTA stimulated the survival of neutrophils,it caused apoptotic cell death when complexed with metHb. The activation of neutrophils by metHb + LTA was subdued by the presence of other types of white blood cells. INTERPRETATION metHb and metHb + LTA complex are ligands of TLR2,inducing an unconventional TLR signalling pathway. Neutrophils are a highly sensitive cell type to metHb + LTA complex. During a haemolytic infection,white blood cells in the vicinity crosstalk to modulate neutrophil TLR-signalling induced by metHb and LTA.
View Publication
Reference
Douvaras P and Fossati V (AUG 2015)
Nature protocols 10 8 1143--1154
Generation and isolation of oligodendrocyte progenitor cells from human pluripotent stem cells.
In the CNS,oligodendrocytes act as the myelinating cells. Oligodendrocytes have been identified to be key players in several neurodegenerative disorders. This protocol describes a robust,fast and reproducible differentiation protocol to generate human oligodendrocytes from pluripotent stem cells (PSCs) using a chemically defined,growth factor-rich medium. Within 8 d,PSCs differentiate into paired box 6-positive (PAX6(+)) neural stem cells,which give rise to OLIG2(+) progenitors by day 12. Oligodendrocyte lineage transcription factor 2-positive (OLIG2(+)) cells begin to express the transcription factor NKX2.2 around day 18,followed by SRY-box 10 (SOX10) around day 40. Oligodendrocyte progenitor cells (OPCs) that are positive for the cell surface antigen recognized by the O4 antibody (O4(+)) appear around day 50 and reach,on average,43% of the cell population after 75 d of differentiation. O4(+) OPCs can be isolated by cell sorting for myelination studies,or they can be terminally differentiated to myelin basic protein-positive (MBP(+)) oligodendrocytes. This protocol also describes an alternative strategy for markedly reducing the length and the costs of the differentiation and generating ∼30% O4(+) cells after only 55 d of culture.
View Publication
Reference
Aikawa N et al. ( 2015)
Biological & pharmaceutical bulletin 38 7 1070--1075
A Simple Protocol for the Myocardial Differentiation of Human iPS Cells.
We have developed a simple protocol for inducing the myocardial differentiation of human induced pluripotent stem (iPS) cells. Human iPS cell-derived embryonic bodies (EBs) were treated with a combination of activin-A,bone morphogenetic protein-4 and wnt-3a for one day in serum-free suspension culture,and were subsequently treated with noggin for three days. Thereafter,the EBs were subjected to adherent culture in media with 5% serum. All EBs were differentiated into spontaneously beating EBs,which were identified by the presence of striated muscles in transmission electron microscopy and the expression of the specific cardiomyocyte markers,NKX2-5 and TNNT2. The beating rate of the beating EBs was decreased by treatment with a rapidly activating delayed rectifier potassium current (Ikr) channel blocker,E-4031,an Ikr trafficking inhibitor,pentamidin,and a slowly activating delayed rectifier potassium current (Iks) channel blocker,chromanol 293B,and was increased by treatment with a beta-receptor agonist,isoproterenol. At a low concentration,verapamil,a calcium channel blocker,increased the beating rate of the beating EBs,while a high concentration decreased this rate. These findings suggest that the spontaneously beating EBs were myocardial cell clusters. This simple protocol for myocardial differentiation would be useful in providing a sufficient number of the beating myocardial cell clusters for studies requiring human myocardium.
View Publication
Reference
Sokolov M et al. (JUN 2015)
International journal of molecular sciences 16 7 14737--48
Comparative Analysis of Whole-Genome Gene Expression Changes in Cultured Human Embryonic Stem Cells in Response to Low, Clinical Diagnostic Relevant, and High Doses of Ionizing Radiation Exposure.
The biological effects of low-dose ionizing radiation (LDIR) exposure in humans are not comprehensively understood,generating a high degree of controversy in published literature. The earliest stages of human development are known to be among the most sensitive to stress exposures,especially genotoxic stresses. However,the risks stemming from exposure to LDIR,particularly within the clinical diagnostic relevant dose range,have not been directly evaluated in human embryonic stem cells (hESCs). Here,we describe the dynamics of the whole genome transcriptional responses of different hESC lines to both LDIR and,as a reference,high-dose IR (HDIR). We found that even doses as low as 0.05 Gy could trigger statistically significant transient changes in a rather limited subset of genes in all hESCs lines examined. Gene expression signatures of hESCs exposed to IR appear to be highly dose-,time-,and cell line-dependent. We identified 50 genes constituting consensus gene expression signature as an early response to HDIR across all lines of hESC examined. We observed substantial differences in biological pathways affected by either LDIR or HDIR in hESCs,suggesting that the molecular mechanisms underpinning the responses of hESC may fundamentally differ depending on radiation doses.
View Publication
Reference
Lee YK et al. ( 2016)
1353 191--213
Generation and characterization of patient-specific iPSC model for cardiovascular disease
Advances in differentiation of cardiomyocytes from human induced pluripotent stem cell (hiPSC) were emerged as a tool for modeling of cardiovascular disease that recapitulates the phenotype for the purpose of drug screening,biomarker discovery,and testing of single-nucleotide polymorphism (SNP) as a modifier for disease stratification. Here,we describe the (1) retroviral reprogramming strategies in the generation of human iPSC,(2) methodology in characterization of iPSC in order to identify the stem cell clones with the best quality,and (3) protocol of cardiac differentiation by modulation of Wnt signaling and $\$-catenin pathway.
View Publication
Reference
Zeng P et al. (JAN 2015)
Molecular vision 21 688--98
Fasudil hydrochloride, a potent ROCK inhibitor, inhibits corneal neovascularization after alkali burns in mice.
PURPOSE To investigate the effects and mechanisms of fasudil hydrochloride (fasudil) on and in alkali burn-induced corneal neovascularization (CNV) in mice. METHODS To observe the effect of fasudil,mice with alkali-burned corneas were treated with either fasudil eye drops or phosphate-buffered saline (PBS) four times per day for 14 consecutive days. After injury,CNV and corneal epithelial defects were measured. The production of reactive oxygen species (ROS) and heme oxygenase-1(HO-1) was measured. The infiltration of polymorphonuclear neutrophils (PMNs) and the mRNA expressions of CNV-related genes were analyzed on day 14. RESULTS The incidence of CNV was significantly lower after treatment with 100 μM and 300 μM fasudil than with PBS,especially with 100 μM fasudil. Meanwhile,the incidences of corneal epithelial defects was lower (n=15,all ptextless0.01). After treatment with 100 μM fasudil,the intensity of DHE fluorescence was reduced in the corneal epithelium and stroma than with PBS treatment (n=5,all ptextless0.01),and the number of filtrated PMNs decreased. There were significant differences between the expressions of VEGF,TNF-a,MMP-8,and MMP-9 in the 100 μM fasudil group and the PBS group (n=8,all ptextless0.05). The production of HO-1 protein in the 100 μM fasudil group was 1.52±0.34 times more than in the PBS group (n=5 sample,ptextless0.05). CONCLUSIONS 100 μM fasudil eye drops administered four times daily can significantly inhibit alkali burn-induced CNV and promote the healing of corneal epithelial defects in mice. These effects are attributed to a decrease in inflammatory cell infiltration,reduction of ROS,and upregulation of HO-1 protein after fasudil treatment.
View Publication
MiRNA-Mediated Regulation of the SWI/SNF Chromatin Remodeling Complex Controls Pluripotency and Endodermal Differentiation in Human ESCs.
MicroRNAs and chromatin remodeling complexes represent powerful epigenetic mechanisms that regulate the pluripotent state. miR-302 is a strong inducer of pluripotency,which is characterized by a distinct chromatin architecture. This suggests that miR-302 regulates global chromatin structure; however,a direct relationship between miR-302 and chromatin remodelers has not been established. Here,we provide data to show that miR-302 regulates Brg1 chromatin remodeling complex composition in human embryonic stem cells (hESCs) through direct repression of the BAF53a and BAF170 subunits. With the subsequent overexpression of BAF170 in hESCs,we show that miR-302's inhibition of BAF170 protein levels can affect the expression of genes involved in cell proliferation. Furthermore,miR-302-mediated repression of BAF170 regulates pluripotency by positively influencing mesendodermal differentiation. Overexpression of BAF170 in hESCs led to biased differentiation toward the ectoderm lineage during EB formation and severely hindered directed definitive endoderm differentiation. Taken together,these data uncover a direct regulatory relationship between miR-302 and the Brg1 chromatin remodeling complex that controls gene expression and cell fate decisions in hESCs and suggests that similar mechanisms are at play during early human development.
View Publication
Reference
Ling SSM et al. (JUN 2015)
PLOS ONE 10 6 e0131460
Instrumental Role of Helicobacter pylori γ-Glutamyl Transpeptidase in VacA-Dependent Vacuolation in Gastric Epithelial Cells
Helicobacter pylori causes cellular vacuolation in host cells,a cytotoxic event attributed to vacuolating cytotoxin (VacA) and the presence of permeant weak bases such as ammonia. We report here the role of γ-glutamyl transpeptidase (GGT),a constitutively expressed secretory enzyme of H. pylori,in potentiating VacA-dependent vacuolation formation in H. pylori-infected AGS and primary gastric cells. The enhancement is brought about by GGT hydrolysing glutamine present in the extracellular medium,thereby releasing ammonia which accentuates the VacA-induced vacuolation. The events of vacuolation in H. pylori wild type (WT)- and Δggt-infected AGS cells were first captured and visualized by real-time phase-contrast microscopy where WT was observed to induce more vacuoles than Δggt. By using semi-quantitative neutral red uptake assay,we next showed that Δggt induced significantly less vacuolation in AGS and primary gastric epithelial cells as compared to the parental strain (Ptextless0.05) indicating that GGT potentiates the vacuolating effect of VacA. Notably,vacuolation induced by WT was significantly reduced in the absence of GGT substrate,glutamine (Ptextless0.05) or in the presence of a competitive GGT inhibitor,serine-borate complex. Furthermore,the vacuolating ability of Δggt was markedly restored when co-incubated with purified recombinant GGT (rGGT),although rGGT itself did not induce vacuolation independently. Similarly,the addition of exogenous ammonium chloride as a source of ammonia also rescued the ability of Δggt to induce vacuolation. Additionally,we also show that monoclonal antibodies against GGT effectively inhibited GGT activity and successfully suppressed H. pylori-induced vacuolation. Collectively,our results clearly demonstrate that generation of ammonia by GGT through glutamine hydrolysis is responsible for enhancing VacA-dependent vacuolation. Our findings provide a new perspective on GGT as an important virulence factor and a promising target in the management of H. pylori-associated gastric diseases.
View Publication
Reference
Elanzew A et al. (OCT 2015)
Biotechnology journal 10 10 1589--1599
A reproducible and versatile system for the dynamic expansion of human pluripotent stem cells in suspension.
Reprogramming of patient cells to human induced pluripotent stem cells (hiPSC) has facilitated in vitro disease modeling studies aiming at deciphering the molecular and cellular mechanisms that contribute to disease pathogenesis and progression. To fully exploit the potential of hiPSC for biomedical applications,technologies that enable the standardized generation and expansion of hiPSC from large numbers of donors are required. Paralleled automated processes for the expansion of hiPSC could provide an opportunity to maximize the generation of hiPSC collections from patient cohorts while minimizing hands-on time and costs. In order to develop a simple method for the parallel expansion of human pluripotent stem cells (hPSC) we established a protocol for their cultivation as undifferentiated aggregates in a bench-top bioreactor system (BioLevitator™). We show that long-term expansion (10 passages) of hPSCs either in mTeSR or E8 medium preserved a normal karyotype,three-germ-layer differentiation potential and high expression of pluripotency-associated markers. The system enables the expansion from low inoculation densities (0.3 × 10(5) cells/mL) and provides a simplified,cost-efficient and time-saving method for the provision of hiPSC at midi-scale. Implementation of this protocol in cell production schemes has the potential to advance cell manufacturing in many areas of hiPSC-based medical research.
View Publication
Reference
Wamaitha SE et al. (JUN 2015)
Genes & development 29 12 1239--1255
Gata6 potently initiates reprograming of pluripotent and differentiated cells to extraembryonic endoderm stem cells.
Transcription factor-mediated reprograming is a powerful method to study cell fate changes. In this study,we demonstrate that the transcription factor Gata6 can initiate reprograming of multiple cell types to induced extraembryonic endoderm stem (iXEN) cells. Intriguingly,Gata6 is sufficient to drive iXEN cells from mouse pluripotent cells and differentiated neural cells. Furthermore,GATA6 induction in human embryonic stem (hES) cells also down-regulates pluripotency gene expression and up-regulates extraembryonic endoderm (ExEn) genes,revealing a conserved function in mediating this cell fate switch. Profiling transcriptional changes following Gata6 induction in mES cells reveals step-wise pluripotency factor disengagement,with initial repression of Nanog and Esrrb,then Sox2,and finally Oct4,alongside step-wise activation of ExEn genes. Chromatin immunoprecipitation and subsequent high-throughput sequencing analysis shows Gata6 enrichment near pluripotency and endoderm genes,suggesting that Gata6 functions as both a direct repressor and activator. Together,this demonstrates that Gata6 is a versatile and potent reprograming factor that can act alone to drive a cell fate switch from diverse cell types.
View Publication
Reference
Podrazil M et al. (JUL 2015)
Oncotarget 6 20 18192--205
Phase I/II clinical trial of dendritic-cell based immunotherapy (DCVAC/PCa) combined with chemotherapy in patients with metastatic, castration-resistant prostate cancer.
PURPOSE We conducted an open-label,single-arm Phase I/II clinical trial in metastatic CRPC (mCRPC) patients eligible for docetaxel combined with treatment with autologous mature dendritic cells (DCs) pulsed with killed LNCaP prostate cancer cells (DCVAC/PCa). The primary and secondary endpoints were safety and immune responses,respectively. Overall survival (OS),followed as a part of the safety evaluation,was compared to the predicted OS according to the Halabi and MSKCC nomograms. EXPERIMENTAL DESIGN Twenty-five patients with progressive mCRPC were enrolled. Treatment comprised of initial 7 days administration of metronomic cyclophosphamide 50 mg p.o. DCVAC/PCa treatment consisted of a median twelve doses of 1 × 107 dendritic cells per dose injected s.c. (Aldara creme was applied at the site of injection) during a one-year period. The initial 2 doses of DCVAC/PCa were administered at a 2-week interval,followed by the administration of docetaxel (75 mg/m2) and prednisone (5 mg twice daily) given every 3 weeks until toxicity or intolerance was observed. The DCVAC/PCa was then injected every 6 weeks up to the maximum number of doses manufactured from one leukapheresis. RESULTS No serious DCVAC/PCa-related adverse events have been reported. The median OS was 19 months,whereas the predicted median OS was 11.8 months with the Halabi nomogram and 13 months with the MSKCC nomogram. Kaplan-Meier analyses showed that patients had a lower risk of death compared with both MSKCC (Hazard Ratio 0.26,95% CI: 0.13-0.51) and Halabi (Hazard Ratio 0.33,95% CI: 0.17-0.63) predictions. We observed a significant decrease in Tregs in the peripheral blood. The long-term administration of DCVAC/PCa led to the induction and maintenance of PSA specific T cells. We did not identify any immunological parameter that significantly correlated with better OS. CONCLUSIONS In patients with mCRPC,the combined chemoimmunotherapy with DCVAC/PCa and docetaxel was safe and resulted in longer than expected survival. Concomitant chemotherapy did not preclude the induction of specific anti-tumor cytotoxic T cells.
View Publication