Hamot G et al. (JUN 2015)
Biopreservation and biobanking 13 3 152--63
Method validation for automated isolation of viable peripheral blood mononuclear cells.
BACKGROUND This article is part of a series of publications providing formal method validation for biospecimen processing in the context of accreditation in laboratories and biobanks. We report the optimization and validation for fitness-for-purpose of automated and manual protocols for isolating peripheral blood mononuclear cells (PBMCs) from whole blood,and compare the two methods. METHODS The manual method was optimized for whole blood centrifugation speed,gradient type (Ficoll,Leucosep,CPT),and freezing method (Mr Frosty,Controlled Rate Freezing). Various parameters of the automated protocol using a CPT gradient on a Tecan liquid handler were optimized. Optimal protocols were validated in parallel for reproducibility and robustness. Optimization and validation were assessed in terms of cell yield,viability,recovery,white blood cell (WBC) subpopulation distribution,gene expression,and lymphoblastoid cell line (LCL) transformation. RESULTS An initial centrifugation of whole blood at 2000 g was considered optimal for further processing,allowing isolation of plasma and PBMCs from a single sample. The three gradients gave similar outcomes in terms of cell yield,viability,and WBC subpopulation distribution. Ficoll showed some advantages and was selected for further evaluations. Optimization of the automated protocol script using a CPT gradient gave 61% cell recovery. No significant differences in quality,quantity,and WBC subpopulation distribution were seen between the two freezing methods,and Mr. Frosty was selected. The manual and automated protocols were reproducible in terms of quantity,recovery,viability,WBC subpopulation distribution,gene expression,and LCL transformation. Most (75%-100%) of the 13 robustness parameters were accepted for both methods with an 8 h pre-centrifugation delay versus 38%-85% after 24 h. Differences identified between the automated and manual methods were not considered consequential. CONCLUSIONS We validated the first fully automated method for isolating viable PBMCs,including RNA analysis and generation of LCLs. We recommend processing within 8 h of blood collection.
View Publication
文献
Floyd ZE et al. (APR 2015)
Cellular reprogramming 17 2 95--105
Prolonged proteasome inhibition cyclically upregulates Oct3/4 and Nanog gene expression, but reduces induced pluripotent stem cell colony formation.
There is ample evidence that the ubiquitin-proteasome system is an important regulator of transcription and its activity is necessary for maintaining pluripotency and promoting cellular reprogramming. Moreover,proteasome activity contributes to maintaining the open chromatin structure found in pluripotent stem cells,acting as a transcriptional inhibitor at specific gene loci generally associated with differentiation. The current study was designed to understand further the role of proteasome inhibition in reprogramming and its ability to modulate endogenous expression of pluripotency-related genes and induced pluripotent stem cells (iPSCs) colony formation. Herein,we demonstrate that acute combinatorial treatment with the proteasome inhibitors MG101 or MG132 and the histone deacetylase (HDAC) inhibitor valproic acid (VPA) increases gene expression of the pluripotency marker Oct3/4,and that MG101 alone is as effective as VPA in the induction of Oct3/4 mRNA expression in fibroblasts. Prolonged proteasome inhibition cyclically upregulates gene expression of Oct3/4 and Nanog,but reduces colony formation in the presence of the iPSC induction cocktail. In conclusion,our results demonstrate that the 26S proteasome is an essential modulator in the reprogramming process. Its inhibition enhances expression of pluripotency-related genes; however,efficient colony formation requires proteasome activity. Therefore,discovery of small molecules that increase proteasome activity might lead to more efficient cell reprogramming and generation of pluripotent cells.
View Publication
Cardiac malformations and disease are the leading causes of death in the United States in live-born infants and adults,respectively. In both of these cases,a decrease in the number of functional cardiomyocytes often results in improper growth of heart tissue,wound healing complications,and poor tissue repair. The field of cardiac tissue engineering seeks to address these concerns by developing cardiac patches created from a variety of biomaterial scaffolds to be used in surgical repair of the heart. These scaffolds should be fully degradable biomaterial systems with tunable properties such that the materials can be altered to meet the needs of both in vitro culture (e.g. disease modeling) and in vivo application (e.g. cardiac patch). Current platforms do not utilize both structural anisotropy and proper cell-matrix contacts to promote functional cardiac phenotypes and thus there is still a need for critically sized scaffolds that mimic both the structural and adhesive properties of native tissue. To address this need,we have developed a silk-based scaffold platform containing cardiac tissue-derived extracellular matrix (cECM). These silk-cECM composite scaffolds have tunable architectures,degradation rates,and mechanical properties. Subcutaneous implantation in rats demonstrated that addition of the cECM to aligned silk scaffold led to 99% endogenous cell infiltration and promoted vascularization of a critically sized scaffold (10 × 5 × 2.5 mm) after 4 weeks in vivo. In vitro,silk-cECM scaffolds maintained the HL-1 atrial cardiomyocytes and human embryonic stem cell-derived cardiomyocytes and promoted a more functional phenotype in both cell types. This class of hybrid silk-cECM anisotropic scaffolds offers new opportunities for developing more physiologically relevant tissues for cardiac repair and disease modeling.
View Publication
文献
Gallegos-Cá et al. (AUG 2015)
Stem cells and development 24 16 1901--1911
For diseases of the brain,the pig (Sus scrofa) is increasingly being used as a model organism that shares many anatomical and biological similarities with humans. We report that pig induced pluripotent stem cells (iPSC) can recapitulate events in early mammalian neural development. Pig iPSC line (POU5F1(high)/SSEA4(low)) had a higher potential to form neural rosettes (NR) containing neuroepithelial cells than either POU5F1(low)/SSEA4(low) or POU5F1(low)/SSEA4(high) lines. Thus,POU5F1 and SSEA4 pluripotency marker profiles in starting porcine iPSC populations can predict their propensity to form more robust NR populations in culture. The NR were isolated and expanded in vitro,retaining their NR morphology and neuroepithelial molecular properties. These cells expressed anterior central nervous system fate markers OTX2 and GBX2 through at least seven passages,and responded to retinoic acid,promoting a more posterior fate (HOXB4+,OTX2-,and GBX2-). These findings offer insight into pig iPSC development,which parallels the human iPSC in both anterior and posterior neural cell fates. These in vitro similarities in early neural differentiation processes support the use of pig iPSC and differentiated neural cells as a cell therapy in allogeneic porcine neural injury and degeneration models,providing relevant translational data for eventual human neural cell therapies.
View Publication
文献
Radan L et al. ( 2016)
1341 133--142
Delivering antisense morpholino oligonucleotides to target telomerase splice variants in human embryonic stem cells
Morpholino oligonucleotides (MO) are an innovative tool that provides a means for examining and modifying gene expression outcomes by antisense interaction with targeted RNA transcripts. The site-specific nature of their binding facilitates focused modulation to alter splice variant expression patterns. Here we describe the steric-blocking of human telomerase reverse transcriptase (hTERT) $$$$ and $$$$ splice variants using MO to examine cellular outcomes related to pluripotency and differentiation in human embryonic stem cells.
View Publication
文献
Liao J et al. (MAY 2015)
Nature Publishing Group 47 5 469--478
Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells.
Malik Z et al. (JUN 2015)
International forum of allergy & rhinology 5 6 551--556
Staphylococcus aureus impairs the airway epithelial barrier in vitro.
BACKGROUND: Chronic rhinosinusitis (CRS) is a cluster of disorders that result in sinonasal mucosal inflammation. Staphylococcus aureus (S. aureus) is associated with severe and recalcitrant CRS. The purpose of our study was to investigate the effect of S. aureus on respiratory epithelial barrier structure and function. METHODS: Conditioned media from S. aureus reference strains (American Type Culture Collection [ATCC] 13565,14458,and 25923) was applied to air-liquid interface (ALI) cultures of primary human nasal epithelial cells (HNECs) and transepithelial electrical resistance (TEER) was measured to assess cell-to-cell integrity. Electron microscopy was used to gauge the ciliated area and tight junctions (TJs). Additionally,the expression of the TJ protein zona occludens-1 (ZO-1) was examined via immunofluorescence. Statistical analysis was performed using analysis of variance (ANOVA) with pairwise Bonferroni-adjusted t tests. RESULTS: Secreted products applied to ALI cultures from S. aureus strain 13565 caused a concentration-dependent decline in electrical impedance compared to controls and reference strains 14458 and 25923 (p textless 0.001). Electron microscopy showed a distinct separation between adjacent cells apically,in the region of TJs. The ciliated area was not affected; however,ZO-1 expression became discontinuous in HNECs exposed to the 13565 strain's conditioned media. CONCLUSION: Conditioned media of the S. aureus strain 13565 damages the airway epithelium by disrupting the TJs between primary HNECs grown at an ALI. These findings suggest that strain-specific S. aureus-secreted product(s) compromise epithelial barrier function,which may constitute 1 of the roles played by S. aureus in the pathophysiology of recalcitrant CRS. Further research is required to uncover the relevant molecular mechanisms.
View Publication
文献
Tomov ML et al. (JUL 2015)
Macromolecular bioscience 15 7 892--900
The Human Embryoid Body Cystic Core Exhibits Architectural Complexity Revealed by use of High Throughput Polymer Microarrays.
In pluripotent stem cell differentiation,embryoid bodies (EBs) provide a three-dimensional [3D] multicellular precursor in lineage specification. The internal structure of EBs is not well characterized yet is predicted to be an important parameter to differentiation. Here,we use custom SU-8 molds to generate transparent lithography-templated arrays of polydimethylsiloxane (LTA-PDMS) for high throughput analysis of human embryonic stem cell (hESC) EB formation and internal architecture. EBs formed in 200 and 500 $$m diameter microarray wells by use of single cells,2D clusters,or 3D early aggregates were compared. We observe that 200 $$m EBs are monocystic versus 500 $$m multicystic EBs that contain macro,meso and microsized cysts. In adherent differentiation of 500 $$m EBs,the multicystic character impairs the 3D to 2D transition creating non-uniform monolayers. Our findings reveal that EB core structure has a size-dependent character that influences its architecture and cell population uniformity during early differentiation.
View Publication
文献
Zaman S et al. ( 2015)
Neoplasia (New York,N.Y.) 17 3 289--300
Targeting the pro-survival protein MET with tivantinib (ARQ 197) inhibits growth of multiple myeloma cells.
The hepatocyte growth factor (HGF)/MNNG HOS transforming gene (MET) pathway regulates cell growth,survival,and migration. MET is mutated or amplified in several malignancies. In myeloma,MET is not mutated,but patients have high plasma concentrations of HGF,high levels of MET expression,and gene copy number,which are associated with poor prognosis and advanced disease. Our previous studies demonstrated that MET is critical for myeloma cell survival and its knockdown induces apoptosis. In our current study,we tested tivantinib (ARQ 197),a small-molecule pharmacological MET inhibitor. At clinically achievable concentrations,tivantinib induced apoptosis by textgreater50% in all 12 human myeloma cell lines tested. This biologic response was associated with down-regulation of MET signaling and inhibition of the mitogen-activated protein kinase and phosphoinositide 3-kinase pathways,which are downstream of the HGF/MET axis. Tivantinib was equally effective in inducing apoptosis in myeloma cell lines resistant to standard chemotherapy (melphalan,dexamethasone,bortezomib,and lenalidomide) as well as in cells that were co-cultured with a protective bone marrow microenvironment or with exogenous cytokines. Tivantinib induced apoptosis in CD138+ plasma cells from patients and demonstrated efficacy in a myeloma xenograft mouse model. On the basis of these data,we initiated a clinical trial for relapsed/refractory multiple myeloma (MM). In conclusion,MET inhibitors may be an attractive target-based strategy for the treatment of MM.
View Publication
文献
Avior Y et al. (JUL 2015)
Hepatology 62 1 265--278
Microbial-Derived Lithocholic Acid and Vitamin Ktextlessinftextgreater2textless/inftextgreater Drive the Metabolic Maturation of Pluripotent Stem Cells-Derived and Fetal Hepatocytes
The liver is the main organ responsible for the modification,clearance,and transformational toxicity of most xenobiotics owing to its abundance in cytochrome P450 (CYP450) enzymes. However,the scarcity and variability of primary hepatocytes currently limits their utility. Human pluripotent stem cells (hPSCs) represent an excellent source of differentiated hepatocytes; however,current protocols still produce fetal-like hepatocytes with limited mature function. Interestingly,fetal hepatocytes acquire mature CYP450 expression only postpartum,suggesting that nutritional cues may drive hepatic maturation. We show that vitamin K2 and lithocholic acid,a by-product of intestinal flora,activate pregnane X receptor (PXR) and subsequent CYP3A4 and CYP2C9 expression in hPSC-derived and isolated fetal hepatocytes. Differentiated cells produce albumin and apolipoprotein B100 at levels equivalent to primary human hepatocytes,while demonstrating an 8-fold induction of CYP450 activity in response to aryl hydrocarbon receptor (AhR) agonist omeprazole and a 10-fold induction in response to PXR agonist rifampicin. Flow cytometry showed that over 83% of cells were albumin and hepatocyte nuclear factor 4 alpha (HNF4α) positive,permitting high-content screening in a 96-well plate format. Analysis of 12 compounds showed an R(2) correlation of 0.94 between TC50 values obtained in stem cell-derived hepatocytes and primary cells,compared to 0.62 for HepG2 cells. Finally,stem cell-derived hepatocytes demonstrate all toxicological endpoints examined,including steatosis,apoptosis,and cholestasis,when exposed to nine known hepatotoxins. CONCLUSION: Our work provides fresh insights into liver development,suggesting that microbial-derived cues may drive the maturation of CYP450 enzymes postpartum. Addition of these cues results in the first functional,inducible,hPSC-derived hepatocyte for predictive toxicology. (Hepatology 2015).
View Publication
文献
Dye BR et al. (MAR 2015)
eLife 4 e05098
In vitro generation of human pluripotent stem cell derived lung organoids.
Recent breakthroughs in 3-dimensional (3D) organoid cultures for many organ systems have led to new physiologically complex in vitro models to study human development and disease. Here,we report the step-wise differentiation of human pluripotent stem cells (hPSCs) (embryonic and induced) into lung organoids. By manipulating developmental signaling pathways hPSCs generate ventral-anterior foregut spheroids,which are then expanded into human lung organoids (HLOs). HLOs consist of epithelial and mesenchymal compartments of the lung,organized with structural features similar to the native lung. HLOs possess upper airway-like epithelium with basal cells and immature ciliated cells surrounded by smooth muscle and myofibroblasts as well as an alveolar-like domain with appropriate cell types. Using RNA-sequencing,we show that HLOs are remarkably similar to human fetal lung based on global transcriptional profiles,suggesting that HLOs are an excellent model to study human lung development,maturation and disease.
View Publication
文献
Nowycky MC et al. (APR 1985)
Proceedings of the National Academy of Sciences of the United States of America 82 7 2178--82
Long-opening mode of gating of neuronal calcium channels and its promotion by the dihydropyridine calcium agonist Bay K 8644.
A large-conductance calcium channel in chicken dorsal root ganglion neurons was studied with patch-clamp recordings of unitary currents. In addition to the conventional pattern of Ca-channel gating previously described in neurons (mode 1")�
View Publication