Small molecules enhance CRISPR genome editing in pluripotent stem cells.
The bacterial CRISPR-Cas9 system has emerged as an effective tool for sequence-specific gene knockout through non-homologous end joining (NHEJ),but it remains inefficient for precise editing of genome sequences. Here we develop a reporter-based screening approach for high-throughput identification of chemical compounds that can modulate precise genome editing through homology-directed repair (HDR). Using our screening method,we have identified small molecules that can enhance CRISPR-mediated HDR efficiency,3-fold for large fragment insertions and 9-fold for point mutations. Interestingly,we have also observed that a small molecule that inhibits HDR can enhance frame shift insertion and deletion (indel) mutations mediated by NHEJ. The identified small molecules function robustly in diverse cell types with minimal toxicity. The use of small molecules provides a simple and effective strategy to enhance precise genome engineering applications and facilitates the study of DNA repair mechanisms in mammalian cells.
View Publication
Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells.
About half of the human genome consists of highly repetitive elements,most of which are considered dispensable for human life. Here,we report that repetitive elements originating from endogenous retroviruses (ERVs) are systematically transcribed during human early embryogenesis in a stage-specific manner. Our analysis highlights that the long terminal repeats (LTRs) of ERVs provide the template for stage-specific transcription initiation,thereby generating hundreds of co-expressed,ERV-derived RNAs. Conversion of human embryonic stem cells (hESCs) to an epiblast-like state activates blastocyst-specific ERV elements,indicating that their activity dynamically reacts to changes in regulatory networks. In addition to initiating stage-specific transcription,many ERV families contain preserved splice sites that join the ERV segment with non-ERV exons in their genomic vicinity. In summary,we find that ERV expression is a hallmark of cellular identity and cell potency that characterizes the cell populations in early human embryos.
View Publication
文献
Zhou Y et al. (JAN 2015)
Cell death & disease 6 e1631
TSC2/mTORC1 signaling controls Paneth and goblet cell differentiation in the intestinal epithelium.
The intestinal mucosa undergoes a continual process of proliferation,differentiation and apoptosis,which is regulated by multiple signaling pathways. Notch signaling is critical for the control of intestinal stem cell maintenance and differentiation. However,the precise mechanisms involved in the regulation of differentiation are not fully understood. Previously,we have shown that tuberous sclerosis 2 (TSC2) positively regulates the expression of the goblet cell differentiation marker,MUC2,in intestinal cells. Using transgenic mice constitutively expressing a dominant negative TSC2 allele,we observed that TSC2 inactivation increased mTORC1 and Notch activities,and altered differentiation throughout the intestinal epithelium,with a marked decrease in the goblet and Paneth cell lineages. Conversely,treatment of mice with either Notch inhibitor dibenzazepine (DBZ) or mTORC1 inhibitor rapamycin significantly attenuated the reduction of goblet and Paneth cells. Accordingly,knockdown of TSC2 activated,whereas knockdown of mTOR or treatment with rapamycin decreased,the activity of Notch signaling in the intestinal cell line LS174T. Importantly,our findings demonstrate that TSC2/mTORC1 signaling contributes to the maintenance of intestinal epithelium homeostasis by regulating Notch activity.
View Publication
文献
Wong AP et al. (MAR 2015)
Nature protocols 10 3 363--81
Efficient generation of functional CFTR-expressing airway epithelial cells from human pluripotent stem cells.
Airway epithelial cells are of great interest for research on lung development,regeneration and disease modeling. This protocol describes how to generate cystic fibrosis (CF) transmembrane conductance regulator protein (CFTR)-expressing airway epithelial cells from human pluripotent stem cells (PSCs). The stepwise approach from PSC culture to differentiation into progenitors and then mature epithelia with apical CFTR activity is outlined. Human PSCs that were inefficient at endoderm differentiation using our previous lung differentiation protocol were able to generate substantial lung progenitor cell populations. Augmented CFTR activity can be observed in all cultures as early as at 35 d of differentiation,and full maturation of the cells in air-liquid interface cultures occurs in textless5 weeks. This protocol can be used for drug discovery,tissue regeneration or disease modeling.
View Publication
文献
Lei IL et al. (JAN 2015)
Journal of visualized experiments : JoVE January 52047. doi: 10.3791/52047.
Derivation of cardiac progenitor cells from embryonic stem cells.
Cardiac progenitor cells (CPCs) have the capacity to differentiate into cardiomyocytes,smooth muscle cells (SMC),and endothelial cells and hold great promise in cell therapy against heart disease. Among various methods to isolate CPCs,differentiation of embryonic stem cell (ESC) into CPCs attracts great attention in the field since ESCs can provide unlimited cell source. As a result,numerous strategies have been developed to derive CPCs from ESCs. In this protocol,differentiation and purification of embryonic CPCs from both mouse and human ESCs is described. Due to the difficulty of using cell surface markers to isolate embryonic CPCs,ESCs are engineered with fluorescent reporters activated by CPC-specific cre recombinase expression. Thus,CPCs can be enriched by fluorescence-activated cell sorting (FACS). This protocol illustrates procedures to form embryoid bodies (EBs) from ESCs for CPC specification and enrichment. The isolated CPCs can be subsequently cultured for cardiac lineage differentiation and other biological assays. This protocol is optimized for robust and efficient derivation of CPCs from both mouse and human ESCs.
View Publication
文献
McGrath PS et al. (JUL 2015)
Diabetes 64 7 2497--2505
The basic helix-loop-helix transcription factor neurog3 is required for development of the human endocrine pancreas
Neurogenin3 (NEUROG3) is a basic helix-loop-helix transcription factor required for development of the endocrine pancreas in mice. In contrast,humans with NEUROG3 mutations are born with endocrine pancreas function,calling into question whether NEUROG3 is required for human endocrine pancreas development. To test this directly,we generated human embryonic stem cell (hESC) lines where both alleles of NEUROG3 were disrupted using CRISPR/Cas9-mediated gene targeting. NEUROG3(-/-) hESC lines efficiently formed pancreatic progenitors but lacked detectible NEUROG3 protein and did not form endocrine cells in vitro. Moreover,NEUROG3(-/-) hESC lines were unable to form mature pancreatic endocrine cells after engraftment of PDX1(+)/NKX6.1(+) pancreatic progenitors into mice. In contrast,a 75-90% knockdown of NEUROG3 caused a reduction,but not a loss,of pancreatic endocrine cell development. We conclude that NEUROG3 is essential for endocrine pancreas development in humans and that as little as 10% NEUROG3 is sufficient for formation of pancreatic endocrine cells.
View Publication
文献
Rao RA et al. (FEB 2015)
Scientific reports 5 8229
Ezh2 mediated H3K27me3 activity facilitates somatic transition during human pluripotent reprogramming.
Factor induced reprogramming of fibroblasts is an orchestrated but inefficient process. At the epigenetic level,it results in drastic chromatin changes to erase the existing somatic memory" and to establish the pluripotent state. Accordingly�
View Publication
文献
Coley JS et al. ( 2015)
PloS one 10 2 e0117450
Dopamine increases CD14+CD16+ monocyte migration and adhesion in the context of substance abuse and HIV neuropathogenesis.
Drug abuse is a major comorbidity of HIV infection and cognitive disorders are often more severe in the drug abusing HIV infected population. CD14+CD16+ monocytes,a mature subpopulation of peripheral blood monocytes,are key mediators of HIV neuropathogenesis. Infected CD14+CD16+ monocyte transmigration across the blood brain barrier mediates HIV entry into the brain and establishes a viral reservoir within the CNS. Despite successful antiretroviral therapy,continued influx of CD14+CD16+ monocytes,both infected and uninfected,contributes to chronic neuroinflammation and the development of HIV associated neurocognitive disorders (HAND). Drug abuse increases extracellular dopamine in the CNS. Once in the brain,CD14+CD16+ monocytes can be exposed to extracellular dopamine due to drug abuse. The direct effects of dopamine on CD14+CD16+ monocytes and their contribution to HIV neuropathogenesis are not known. In this study,we showed that CD14+CD16+ monocytes express mRNA for all five dopamine receptors by qRT-PCR and D1R,D5R and D4R surface protein by flow cytometry. Dopamine and the D1-like dopamine receptor agonist,SKF38393,increased CD14+CD16+ monocyte migration that was characterized as chemokinesis. To determine whether dopamine affected cell motility and adhesion,live cell imaging was used to monitor the accumulation of CD14+CD16+ monocytes on the surface of a tissue culture dish. Dopamine increased the number and the rate at which CD14+CD16+ monocytes in suspension settled to the dish surface. In a spreading assay,dopamine increased the area of CD14+CD16+ monocytes during the early stages of cell adhesion. In addition,adhesion assays showed that the overall total number of adherent CD14+CD16+ monocytes increased in the presence of dopamine. These data suggest that elevated extracellular dopamine in the CNS of HIV infected drug abusers contributes to HIV neuropathogenesis by increasing the accumulation of CD14+CD16+ monocytes in dopamine rich brain regions.
View Publication
文献
Zhang X et al. ( 2016)
1353 323--342
Mitochondrial Disease-Specific Induced Pluripotent Stem Cell Models: Generation and Characterization.
Mitochondrial disease is a group of disorders caused by dysfunctional mitochondria,of which the mutation in the mitochondrial DNA is one of the primary factors. However,the molecular pathogenesis of mitochondrial diseases remains poorly understood due to lack of cell models. Patient-specific induced pluripotent stem cells (iPS cells or iPSCs) are originated from individuals suffering different diseases but carrying unchanged disease causing gene. Therefore,patient-specific iPS cells can be used as excellent cell models to elucidate the mechanisms underlying mitochondrial diseases. Here we present a detailed protocol for generating iPS cells from urine cells and fibroblasts for instance,as well as a series of characterizations.
View Publication
文献
Leung A and Murphy GJ (JAN 2016)
Methods in molecular biology (Clifton,N.J.) 1353 261--270
Multisystemic Disease Modeling of Liver-Derived Protein Folding Disorders Using Induced Pluripotent Stem Cells (iPSCs).
Familial transthyretin amyloidosis (ATTR) is an autosomal dominant protein-folding disorder caused by over 100 distinct mutations in the transthyretin (TTR) gene. In ATTR,protein secreted from the liver aggregates and forms fibrils in target organs,chiefly the heart and peripheral nervous system,highlighting the need for a model capable of recapitulating the multisystem complexity of this clinically variable disease. Here,we describe detailed methodologies for the directed differentiation of protein folding disease-specific iPSCs into hepatocytes that produce mutant protein,and neural-lineage cells often targeted in disease. Methodologies are also described for the construction of multisystem models and drug screening using iPSCs.
View Publication
文献
Orellana MD et al. (AUG 2015)
Cryobiology 71 1 151--160
Efficient recovery of undifferentiated human embryonic stem cell cryopreserved with hydroxyethyl starch, dimethyl sulphoxide and serum replacement
BACKGROUND The therapeutic use of human embryonic stem cells (hESCs) is dependent on an efficient cryopreservation protocol for long-term storage. The aim of this study was to determine whether the combination of three cryoprotecting reagents using two freezing systems might improve hESC recovery rates with maintenance of hESC pluripotency properties for potential cell therapy application. METHODS Recovery rates of hESC colonies which were frozen in three cryoprotective solutions: Me2SO/HES/SR medium,Defined-medium® and Me2SO/SFB in medium solution were evaluated in ultra-slow programmable freezing system (USPF) and a slow-rate freezing system (SRF). The hESC pluripotency properties after freezing-thawing were evaluated. RESULTS We estimated the distribution frequency of survival colonies and observed that independent of the freezing system used (USPF or SRF) the best results were obtained with Me2SO/HES/SR as cryopreservation medium. We showed a significant hESC recovery colonies rate after thawing in Me2SO/HES/SR medium were 3.88 and 2.9 in USPF and SRF,respectively. The recovery colonies rate with Defined-medium® were 1.05 and 1.07 however in classical Me2SO medium were 0.5 and 0.86 in USPF and SRF,respectively. We showed significant difference between Me2SO/HES/SR medium×Defined-medium® and between Me2SO/HES/SR medium×Me2SO medium,for two cryopreservation systems (Ptextless0.05). CONCLUSION We developed an in house protocol using the combination of Me2SO/HES/SR medium and ultra-slow programmable freezing system which resulted in hESC colonies that remain undifferentiated,maintain their in vitro and in vivo pluripotency properties and genetic stability. This approach may be suitable for cell therapy studies.
View Publication
文献
Lee J-HJBJH et al. (APR 2015)
Stem Cells 33 4 1142--1152
Reversible lineage-specific priming of human embryonic stem cells can be exploited to optimize the yield of differentiated cells.
The clinical use of human embryonic stem cells (hESCs) requires efficient cellular expansion that must be paired with an ability to generate specialized progeny through differentiation. Self-renewal and differentiation are deemed inherent hallmarks of hESCs and a growing body of evidence suggests that initial culture conditions dictate these two aspects of hESC behavior. Here,we reveal that defined culture conditions using commercial mTeSR1 media augment the expansion of hESCs and enhance their capacity for neural differentiation at the expense of hematopoietic lineage competency without affecting pluripotency. This culture-induced modification was shown to be reversible,as culture in mouse embryonic fibroblast-conditioned media (MEF-CM) in subsequent passages allowed mTeSR1-expanded hESCs to re-establish hematopoietic differentiation potential. Optimal yield of hematopoietic cells can be achieved by expansion in mTeSR1 followed by a recovery period in MEF-CM. Furthermore,the lineage propensity to hematopoietic and neural cell types could be predicted via analysis of surrogate markers expressed by hESCs cultured in mTeSR1 versus MEF-CM,thereby circumventing laborious in vitro differentiation assays. Our study reveals that hESCs exist in a range of functional states and balance expansion with differentiation potential,which can be modulated by culture conditions in a predictive and quantitative manner. Stem Cells 2015;33:1142-1152.
View Publication