Hawkins RD et al. (OCT 2011)
Cell Research 21 10 1393--1409
Dynamic chromatin states in human ES cells reveal potential regulatory sequences and genes involved in pluripotency.
Pluripotency,the ability of a cell to differentiate and give rise to all embryonic lineages,defines a small number of mammalian cell types such as embryonic stem (ES) cells. While it has been generally held that pluripotency is the product of a transcriptional regulatory network that activates and maintains the expression of key stem cell genes,accumulating evidence is pointing to a critical role for epigenetic processes in establishing and safeguarding the pluripotency of ES cells,as well as maintaining the identity of differentiated cell types. In order to better understand the role of epigenetic mechanisms in pluripotency,we have examined the dynamics of chromatin modifications genome-wide in human ES cells (hESCs) undergoing differentiation into a mesendodermal lineage. We found that chromatin modifications at promoters remain largely invariant during differentiation,except at a small number of promoters where a dynamic switch between acetylation and methylation at H3K27 marks the transition between activation and silencing of gene expression,suggesting a hierarchy in cell fate commitment over most differentially expressed genes. We also mapped over 50 000 potential enhancers,and observed much greater dynamics in chromatin modifications,especially H3K4me1 and H3K27ac,which correlate with expression of their potential target genes. Further analysis of these enhancers revealed potentially key transcriptional regulators of pluripotency and a chromatin signature indicative of a poised state that may confer developmental competence in hESCs. Our results provide new evidence supporting the role of chromatin modifications in defining enhancers and pluripotency.
View Publication
Li J-YY et al. (AUG 2012)
PLoS genetics 8 8 e1002879
Dynamic distribution of linker histone H1.5 in cellular differentiation.
Linker histones are essential components of chromatin,but the distributions and functions of many during cellular differentiation are not well understood. Here,we show that H1.5 binds to genic and intergenic regions,forming blocks of enrichment,in differentiated human cells from all three embryonic germ layers but not in embryonic stem cells. In differentiated cells,H1.5,but not H1.3,binds preferentially to genes that encode membrane and membrane-related proteins. Strikingly,37% of H1.5 target genes belong to gene family clusters,groups of homologous genes that are located in proximity to each other on chromosomes. H1.5 binding is associated with gene repression and is required for SIRT1 binding,H3K9me2 enrichment,and chromatin compaction. Depletion of H1.5 results in loss of SIRT1 and H3K9me2,increased chromatin accessibility,deregulation of gene expression,and decreased cell growth. Our data reveal for the first time a specific and novel function for linker histone subtype H1.5 in maintenance of condensed chromatin at defined gene families in differentiated human cells.
View Publication
Ahn Y-T et al. (JAN 2007)
Molecular and cellular biology 27 1 253--66
Dynamic interplay of transcriptional machinery and chromatin regulates late" expression of the chemokine RANTES in T lymphocytes."
The chemokine RANTES (regulated upon activation normal T cell expressed and secreted) is expressed late" (3 to 5 days) after activation in T lymphocytes. In order to understand the molecular events that accompany changes in gene expression�
View Publication
(Apr 2024)
Communications Biology 7
Dynamic molecular network analysis of iPSC-Purkinje cells differentiation delineates roles of ISG15 in SCA1 at the earliest stage
Better understanding of the earliest molecular pathologies of all neurodegenerative diseases is expected to improve human therapeutics. We investigated the earliest molecular pathology of spinocerebellar ataxia type 1 (SCA1),a rare familial neurodegenerative disease that primarily induces death and dysfunction of cerebellum Purkinje cells. Extensive prior studies have identified involvement of transcription or RNA-splicing factors in the molecular pathology of SCA1. However,the regulatory network of SCA1 pathology,especially central regulators of the earliest developmental stages and inflammatory events,remains incompletely understood. Here,we elucidated the earliest developmental pathology of SCA1 using originally developed dynamic molecular network analyses of sequentially acquired RNA-seq data during differentiation of SCA1 patient-derived induced pluripotent stem cells (iPSCs) to Purkinje cells. Dynamic molecular network analysis implicated histone genes and cytokine-relevant immune response genes at the earliest stages of development,and revealed relevance of ISG15 to the following degradation and accumulation of mutant ataxin-1 in Purkinje cells of SCA1 model mice and human patients. Molecular changes in neurodegeneration occur much earlier than previously expected. In this study,dynamic molecular network analysis of iPSC differentiation uncovers a temporal pathway from histone to ISG15 with the earliest molecular changes of SCA1.
View Publication
Kong E et al. (MAR 2013)
Journal of Biological Chemistry 288 13 9112--9125
Dynamic Palmitoylation Links Cytosol-Membrane Shuttling of Acyl-protein Thioesterase-1 and Acyl-protein Thioesterase-2 with That of Proto-oncogene H-Ras Product and Growth-associated Protein-43
Acyl-protein thioesterase-1 (APT1) and APT2 are cytosolic enzymes that catalyze depalmitoylation of membrane-anchored,palmitoylated H-Ras and growth-associated protein-43 (GAP-43),respectively. However,the mechanism(s) of cytosol-membrane shuttling of APT1 and APT2,required for depalmitoylating their substrates H-Ras and GAP-43,respectively,remained largely unknown. Here,we report that both APT1 and APT2 undergo palmitoylation on Cys-2. Moreover,blocking palmitoylation adversely affects membrane localization of both APT1 and APT2 and that of their substrates. We also demonstrate that APT1 not only catalyzes its own depalmitoylation but also that of APT2 promoting dynamic palmitoylation (palmitoylation-depalmitoylation) of both thioesterases. Furthermore,shRNA suppression of APT1 expression or inhibition of its thioesterase activity by palmostatin B markedly increased membrane localization of APT2,and shRNA suppression of APT2 had virtually no effect on membrane localization of APT1. In addition,mutagenesis of the active site Ser residue to Ala (S119A),which renders catalytic inactivation of APT1,also increased its membrane localization. Taken together,our findings provide insight into a novel mechanism by which dynamic palmitoylation links cytosol-membrane trafficking of APT1 and APT2 with that of their substrates,facilitating steady-state membrane localization and function of both.
View Publication
D. Barozzi et al. (Jul 2025)
Cell Reports Methods 5 7
Dynamic stimulation promotes functional tissue-like organization of a 3D human lymphoid microenvironment model in vitro
This work focused on generating a three-dimensional (3D) in vitro dynamic model to study chronic lymphocytic leukemia (CLL) cell dissemination,homing,and mechanisms of therapy resistance. We used a gelatin-based,hard porous biomaterial as a support matrix to develop 3D tissue-like models of the human lymph node and bone marrow,which were matured inside bioreactors under dynamic perfusion of medium. Comparing static and dynamic cultures of these 3D constructs revealed that perfusion promoted a tissue-like internal organization of cells,characterized by the expression of specific functional markers and deposition of an intricate extracellular matrix protein network. Recirculation of CLL cells within the dynamic system led to changes in leukemic cell behavior and in the expression of key markers involved in tumor progression. These findings suggest that the model is well suited for investigating the pathophysiological mechanisms of CLL and potentially other hematological malignancies.
View Publication
(Dec 2024)
Stem Cell Research & Therapy 15 14
Dynamic three dimensional environment for efficient and large scale generation of smooth muscle cells from hiPSCs
BackgroundChronic ischemic limb disease often leads to amputation,which remains a significant clinical problem. Smooth-muscle cells (SMCs) are crucially involved in the development and progression of many cardiovascular diseases,but studies with primary human SMCs have been limited by a lack of availability. Here,we evaluated the efficiency of two novel protocols for differentiating human induced-pluripotent stem cells (hiPSCs) into SMCs and assessed their potency for the treatment of ischemic limb disease.MethodshiPSCs were differentiated into SMCs via a conventional two-dimensional (2D) protocol that was conducted entirely with cell monolayers,or via two protocols that consisted of an initial five-day three-dimensional (3D) spheroid phase followed by a six-day 2D monolayer phase (3D?+?2D differentiation). The 3D phases were conducted in shaker flasks on an orbital shaker (the 3D?+?2D shaker protocol) or in a PBS bioreactor (the 3D?+?2D bioreactor protocol). Differentiation efficiency was evaluated via the expression of SMC markers (smooth-muscle actin [SMA],smooth muscle protein 22 [SM22],and Calponin-1),and the biological activity of the differentiated hiPSC-SMCs was evaluated via in-vitro assessments of migration (scratch assay),contraction in response to the treatment with a prostaglandin H2 analog (U46619),and tube formation on Geltrex,as well as in-vivo measurements of perfusion (fluorescence angiography) and vessel density in the limbs of mice that were treated with hiPSC-SMCs after experimentally induced hind-limb ischemia (HLI).ResultsBoth 3D?+?2D protocols yielded?>?5.6?×?107 hiPSC-SMCs/differentiation,which was?~?nine-fold more than that produced via 2D differentiation,and flow cytometry analyses confirmed that?>?98% of the 3D?+?2D-differentiated hiPSC-SMCs expressed SMA,?>?81% expressed SM22,and?>?89% expressed Calponin-1. hiPSC-SMCs obtained via the 3D?+?2D shaker protocol also displayed typical SMC-like migratory,contraction,and tube-formation activity in-vitro and significantly improved measurements of perfusion,vessel density,and SMA-positive arterial density in the ischemic limb of mouse HLI model.ConclusionsOur dynamic 3D?+?2D protocols produced an exceptionally high yield of hiPSC-SMCs. Transplantation of these hiPSC-SMCs results in significantly improved recovery of ischemic limb after ischemic injury in mice.
View Publication
Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells.
About half of the human genome consists of highly repetitive elements,most of which are considered dispensable for human life. Here,we report that repetitive elements originating from endogenous retroviruses (ERVs) are systematically transcribed during human early embryogenesis in a stage-specific manner. Our analysis highlights that the long terminal repeats (LTRs) of ERVs provide the template for stage-specific transcription initiation,thereby generating hundreds of co-expressed,ERV-derived RNAs. Conversion of human embryonic stem cells (hESCs) to an epiblast-like state activates blastocyst-specific ERV elements,indicating that their activity dynamically reacts to changes in regulatory networks. In addition to initiating stage-specific transcription,many ERV families contain preserved splice sites that join the ERV segment with non-ERV exons in their genomic vicinity. In summary,we find that ERV expression is a hallmark of cellular identity and cell potency that characterizes the cell populations in early human embryos.
View Publication
Ji H et al. (JAN 2015)
The Journal of allergy and clinical immunology 135 1 236--244
Dynamic transcriptional and epigenomic reprogramming from pediatric nasal epithelial cells to induced pluripotent stem cells
BACKGROUND Induced pluripotent stem cells (iPSCs) hold tremendous potential,both as a biological tool to uncover the pathophysiology of disease by creating relevant human cell models and as a source of cells for cell-based therapeutic applications. Studying the reprogramming process will also provide significant insight into tissue development. OBJECTIVE We sought to characterize the derivation of iPSC lines from nasal epithelial cells (NECs) isolated from nasal mucosa samples of children,a highly relevant and easily accessible tissue for pediatric populations. METHODS We performed detailed comparative analysis on the transcriptomes and methylomes of NECs,iPSCs derived from NECs (NEC-iPSCs),and embryonic stem cells (ESCs). RESULTS NEC-iPSCs express pluripotent cell markers,can differentiate into all 3 germ layers in vivo and in vitro,and have a transcriptome and methylome remarkably similar to those of ESCs. However,residual DNA methylation marks exist,which are differentially methylated between NEC-iPSCs and ESCs. A subset of these methylation markers related to epithelium development and asthma and specific to NEC-iPSCs persisted after several passages in vitro,suggesting the retention of an epigenetic memory of their tissue of origin. Our analysis also identified novel candidate genes with dynamic gene expression and DNA methylation changes during reprogramming,which are indicative of possible roles in airway epithelium development. CONCLUSION NECs are an excellent tissue source to generate iPSCs in pediatric asthmatic patients,and detailed characterization of the resulting iPSC lines would help us better understand the reprogramming process and retention of epigenetic memory.
View Publication
A. J. Hoogendijk et al. (nov 2019)
Cell reports 29 8 2505--2519.e4
Dynamic Transcriptome-Proteome Correlation Networks Reveal Human Myeloid Differentiation and Neutrophil-Specific Programming.
Human neutrophilic granulocytes form the largest pool of innate immune cells for host defense against bacterial and fungal pathogens. The dynamic changes that accompany the metamorphosis from a proliferating myeloid progenitor cell in the bone marrow into a mature non-dividing polymorphonuclear blood cell have remained poorly defined. Using mass spectrometry-based quantitative proteomics combined with transcriptomic data,we report on the dynamic changes of five developmental stages in the bone marrow and blood. Integration of transcriptomes and proteome unveils highly dynamic and differential interactions between RNA and protein kinetics during human neutrophil development,which can be linked to functional maturation of typical end-stage blood neutrophil killing activities.
View Publication
Sokolov MV et al. (MAY 2011)
Mutation research 709-710 40--8
Dynamics of the transcriptome response of cultured human embryonic stem cells to ionizing radiation exposure.
One of the key consequences of exposure of human cells to genotoxic agents is the activation of DNA damage responses (DDR). While the mechanisms underpinning DDR in fully differentiated somatic human cells have been studied extensively,molecular signaling events and pathways involved in DDR in pluripotent human embryonic stem cells (hESC) remain largely unexplored. We studied changes in the human genome-wide transcriptome of H9 hESC line following exposures to 1Gy of gamma-radiation at 2h and 16h post-irradiation. Quantitative real-time PCR was performed to verify the expression data for a subset of genes. In parallel,the cell growth,DDR kinetics,and expression of pluripotency markers in irradiated hESC were monitored. The changes in gene expression in hESC after exposure to ionizing radiation (IR) are substantially different from those observed in somatic human cell lines. Gene expression patterns at 2h post-IR showed almost an exclusively p53-dependent,predominantly pro-apoptotic,signature with a total of only 30 up-regulated genes. In contrast,the gene expression patterns at 16h post-IR showed 354 differentially expressed genes,mostly involved in pro-survival pathways,such as increased expression of metallothioneins,ubiquitin cycle,and general metabolism signaling. Cell growth data paralleled trends in gene expression changes. DDR in hESC followed the kinetics reported for human somatic differentiated cells. The expression of pluripotency markers characteristic of undifferentiated hESC was not affected by exposure to IR during the time course of our analysis. Our data on dynamics of transcriptome response of irradiated hESCs may provide a valuable tool to screen for markers of IR exposure of human cells in their most naive state; thus unmasking the key elements of DDR; at the same time,avoiding the complexity of interpreting distinct cell type-dependent genotoxic stress responses of terminally differentiated cells.
View Publication
(Jan 2025)
PLOS Pathogens 21 1
Dynamics of tissue repair regulatory T cells and damage in acute Trypanosoma cruzi infection
Tissue-repair regulatory T cells (trTregs) comprise a specialized cell subset essential for tissue homeostasis and repair. While well-studied in sterile injury models,their role in infection-induced tissue damage and antimicrobial immunity is less understood. We investigated trTreg dynamics during acute Trypanosoma cruzi infection,marked by extensive tissue damage and strong CD8+ immunity. Unlike sterile injury models,trTregs significantly declined in secondary lymphoid organs and non-lymphoid target tissues during infection,correlating with systemic and local tissue damage,and downregulation of function-associated genes in skeletal muscle. This decline was linked to decreased systemic IL-33 levels,a key trTreg growth factor,and promoted by the Th1 cytokine IFN-γ. Early recombinant IL-33 treatment increased trTregs,type 2 innate lymphoid cells,and parasite-specific CD8+ cells at specific time points after infection,leading to reduced tissue damage,lower parasite burden,and improved disease outcome. Our findings not only provide novel insights into trTregs during infection but also highlight the potential of optimizing immune balance by modulating trTreg responses to promote tissue repair while maintaining effective pathogen control during infection-induced injury. Author summaryDuring Chagas’ disease,caused by the protozoan Trypanosoma cruzi,severe organ damage is generated by the interplay between the parasite and the immune response. In our investigation,we examined the role of tissue-repair regulatory T cells (trTregs) during the acute phase of T. cruzi infection in mice. Surprisingly,we observed a reduction in trTregs at the peak of tissue damage,contrary to their usual accumulation after injury in other contexts. This decline aligned with decreased levels of interleukin-33,a critical factor for trTreg survival,and was promoted by the effector cytokine IFN-γ. Administering interleukin-33 at early infection times not only boosted trTregs but also expanded other reparative and antiparasitic immune cells. Consequently,these treated mice exhibited reduced damage and lower parasite levels in tissues. Our findings provide new insights into how trTreg function during infection-related injury,paving the way for strategies that balance the immune response to support tissue repair without weakening the body’s ability to fight the infection. This approach could have broader implications for treating infectious diseases and conditions involving tissue damage.
View Publication