Human pluripotent stem cell tools for cardiac optogenetics
It is likely that arrhythmias should be avoided for therapies based on human pluripotent stem cell (hPSC)-derived cardiomyocytes (CM) to be effective. Towards achieving this goal,we introduced light-activated channelrhodopsin-2 (ChR2),a cation channel activated with 480 nm light,into human embryonic stem cells (hESC). By using in vitro approaches,hESC-CM are able to be activated with light. ChR2 is stably transduced into undifferentiated hESC via a lentiviral vector. Via directed differentiation,hESCChR2-CM are produced and subjected to optical stimulation. hESCChR2-CM respond to traditional electrical stimulation and produce similar contractility features as their wild-type counterparts but only hESCChR2-CM can be activated by optical stimulation. Here it is shown that a light sensitive protein can enable in vitro optical control of hESC-CM and that this activation occurs optimally above specific light stimulation intensity and pulse width thresholds. For future therapy,in vivo optical stimulation along with optical inhibition could allow for acute synchronization of implanted hPSC-CM with patient cardiac rhythms.
View Publication
文献
Er JC et al. (FEB 2015)
Angewandte Chemie - International Edition 54 8 2442--2446
Neuo: A fluorescent chemical probe for live neuron labeling
To address existing limitations in live neuron imaging,we have developed NeuO,a novel cell-permeable fluorescent probe with an unprecedented ability to label and image live neurons selectively over other cells in the brain. NeuO enables robust live neuron imaging and isolation in vivo and in vitro across species; its versatility and ease of use sets the basis for its development in a myriad of neuronal targeting applications.
View Publication
文献
Kikuchi C et al. (JAN 2015)
Cell Transplantation 24 12 2491--2504
Comparison of cardiomyocyte differentiation potential between type 1 diabetic donor- and nondiabetic donor-derived induced pluripotent stem cells
Type 1 diabetes mellitus (T1DM) is the most common type of diabetes in children and adolescents. Diabetic subjects are more likely to experience a myocardial infarction compared to nondiabetic subjects. In recent years,induced pluripotent stem cells (iPSCs) have received increasing attention from basic scientists and clinicians and hold promise for myocardial regeneration due to their unlimited proliferation potential and differentiation capacity. However,cardiomyogenesis of type 1 diabetic donor-derived iPSCs (T1DM-iPSCs) has not been investigated yet. The aim of the study was to comparatively analyze cardiomyocyte (CM) differentiation capacity of nondiabetic donor-derived iPSCs (N-iPSCs) and T1DM-iPSCs. The differentiated CMs were confirmed by both expression of cardiac-specific markers and presence of cardiac action potential. Since mitochondrial bioenergetics is vital to every aspect of CM function,extracellular acidification rates and oxygen consumption rates were measured using Seahorse extracellular flux analyzer. The results showed that N-iPSCs and T1DMiPSCs demonstrated similar capacity of differentiation into spontaneously contracting CMs exhibiting nodal-,atrial-,or ventricular-like action potentials. Differentiation efficiency was up to 90%. In addition,the CMs differentiated from N-iPSCs and T1DM-iPSCs (N-iPSC-CMs and T1DM-iPSC-CMs,respectively) showed 1) well-regulated glucose utilization at the level of glycolysis and mitochondrial oxidative phosphorylation and 2) the ability to switch metabolic pathways independent of extracellular glucose concentration. Collectively,we demonstrate for the first time that T1DM-iPSCs can differentiate into functional CMs with well-regulated glucose utilization as shown in N-iPSCs,suggesting that T1DM-iPSC-CMs might be a promising autologous cell source for myocardial regeneration in type 1 diabetes patients.
View Publication
文献
Lavagnolli T et al. (JAN 2015)
Genes & development 29 1 23--38
Initiation and maintenance of pluripotency gene expression in the absence of cohesin.
Cohesin is implicated in establishing and maintaining pluripotency. Whether this is because of essential cohesin functions in the cell cycle or in gene regulation is unknown. Here we tested cohesin's contribution to reprogramming in systems that reactivate the expression of pluripotency genes in the absence of proliferation (embryonic stem [ES] cell heterokaryons) or DNA replication (nuclear transfer). Contrary to expectations,cohesin depletion enhanced the ability of ES cells to initiate somatic cell reprogramming in heterokaryons. This was explained by increased c-Myc (Myc) expression in cohesin-depleted ES cells,which promoted DNA replication-dependent reprogramming of somatic fusion partners. In contrast,cohesin-depleted somatic cells were poorly reprogrammed in heterokaryons,due in part to defective DNA replication. Pluripotency gene induction was rescued by Myc,which restored DNA replication,and by nuclear transfer,where reprogramming does not require DNA replication. These results redefine cohesin's role in pluripotency and reveal a novel function for Myc in promoting the replication-dependent reprogramming of somatic nuclei.
View Publication
文献
Zhao HW et al. (MAR 2015)
Neuroscience 288 187--199
Altered iPSC-derived neurons' sodium channel properties in subjects with Monge's disease
Monge's disease,also known as chronic mountain sickness (CMS),is a disease that potentially threatens more than 140 million highlanders during extended time living at high altitudes (over 2500m). The prevalence of CMS in Andeans is about 15-20%,suggesting that the majority of highlanders (non-CMS) are rather healthy at high altitudes; however,CMS subjects experience severe hypoxemia,erythrocytosis and many neurologic manifestations including migraine,headache,mental fatigue,confusion,and memory loss. The underlying mechanisms of CMS neuropathology are not well understood and no ideal treatment is available to prevent or cure CMS,except for phlebotomy. In the current study,we reprogrammed fibroblast cells from both CMS and non-CMS subjects' skin biopsies into the induced pluripotent stem cells (iPSCs),then differentiated into neurons and compared their neuronal properties. We discovered that CMS neurons were much less excitable (higher rheobase) than non-CMS neurons. This decreased excitability was not caused by differences in passive neuronal properties,but instead by a significantly lowered Na+ channel current density and by a shift of the voltage-conductance curve in the depolarization direction. Our findings provide,for the first time,evidence of a neuronal abnormality in CMS subjects as compared to non-CMS subjects,hoping that such studies can pave the way to a better understanding of the neuropathology in CMS.
View Publication
文献
Hansson ML et al. (FEB 2015)
Journal of Biological Chemistry 290 9 5661--5672
Efficient delivery and functional expression of transfected modified mRNA in human embryonic stem cell-derived retinal pigmented epithelial cells
Gene- and cell-based therapies are promising strategies for the treatment of degenerative retinal diseases such as age-related macular degeneration,Stargardt disease,and retinitis pigmentosa. Cellular engineering before transplantation may allow the delivery of cellular factors that can promote functional improvements,such as increased engraftment or survival of transplanted cells. A current challenge in traditional DNA-based vector transfection is to find a delivery system that is both safe and efficient,but using mRNA as an alternative to DNA can circumvent these major roadblocks. In this study,we show that both unmodified and modified mRNA can be delivered to retinal pigmented epithelial (RPE) cells with a high efficiency compared with conventional plasmid delivery systems. On the other hand,administration of unmodified mRNA induced a strong innate immune response that was almost absent when using modified mRNA. Importantly,transfection of mRNA encoding a key regulator of RPE gene expression,microphthalmia-associated transcription factor (MITF),confirmed the functionality of the delivered mRNA. Immunostaining showed that transfection with either type of mRNA led to the expression of roughly equal levels of MITF,primarily localized in the nucleus. Despite these findings,quantitative RT-PCR analyses showed that the activation of the expression of MITF target genes was higher following transfection with modified mRNA compared with unmodified mRNA. Our findings,therefore,show that modified mRNA transfection can be applied to human embryonic stem cell-derived RPE cells and that the method is safe,efficient,and functional.
View Publication
文献
Gorman BR et al. (DEC 2014)
PLoS ONE 9 12 e116037
Multi-scale imaging and informatics pipeline for in situ pluripotent stem cell analysis
Human pluripotent stem (hPS) cells are a potential source of cells for medical therapy and an ideal system to study fate decisions in early development. However,hPS cells cultured in vitro exhibit a high degree of heterogeneity,presenting an obstacle to clinical translation. hPS cells grow in spatially patterned colony structures,necessitating quantitative single-cell image analysis. We offer a tool for analyzing the spatial population context of hPS cells that integrates automated fluorescent microscopy with an analysis pipeline. It enables high-throughput detection of colonies at low resolution,with single-cellular and sub-cellular analysis at high resolutions,generating seamless in situ maps of single-cellular data organized by colony. We demonstrate the tool's utility by analyzing inter- and intra-colony heterogeneity of hPS cell cycle regulation and pluripotency marker expression. We measured the heterogeneity within individual colonies by analyzing cell cycle as a function of distance. Cells loosely associated with the outside of the colony are more likely to be in G1,reflecting a less pluripotent state,while cells within the first pluripotent layer are more likely to be in G2,possibly reflecting a G2/M block. Our multi-scale analysis tool groups colony regions into density classes,and cells belonging to those classes have distinct distributions of pluripotency markers and respond differently to DNA damage induction. Lastly,we demonstrate that our pipeline can robustly handle high-content,high-resolution single molecular mRNA FISH data by using novel image processing techniques. Overall,the imaging informatics pipeline presented offers a novel approach to the analysis of hPS cells that includes not only single cell features but also colony wide,and more generally,multi-scale spatial configuration.
View Publication
文献
Huang Y et al. (FEB 2015)
Blood 125 9 1435--43
Evidence of an oncogenic role of aberrant TOX activation in cutaneous T-cell lymphoma.
TOX is a nuclear factor essential for the development of CD4(+) T cells in the thymus. It is normally expressed in low amounts in mature CD4(+) T cells of the skin and the peripheral blood. We have recently discovered that the transcript levels of TOX were significantly increased in mycosis fungoides,the most common type of cutaneous T-cell lymphoma (CTCL),as compared to normal skin or benign inflammatory dermatoses. However,its involvement in advanced CTCL and its biological effects on CTCL pathogenesis have not been explored. In this study,we demonstrate that TOX expression is also enhanced significantly in primary CD4(+)CD7(-) cells from patients with Sézary syndrome,a leukemic variant of CTCL,and that high TOX transcript levels correlate with increased disease-specific mortality. Stable knockdown of TOX in CTCL cells promoted apoptosis and reduced cell cycle progression,leading to less cell viability and colony-forming ability in vitro and to reduced tumor growth in vivo. Furthermore,TOX knockdown significantly increased 2 cyclin-dependent kinase (CDK) inhibitors,CDKN1B and CDKN1C. Lastly,blocking CDKN1B and CDKN1C reversed growth inhibition of TOX knockdown. Collectively,these findings provide strong evidence that aberrant TOX activation is a critical oncogenic event for CTCL.
View Publication
文献
Zhao Q et al. (JAN 2015)
Proceedings of the National Academy of Sciences of the United States of America 112 2 530--535
MSCs derived from iPSCs with a modified protocol are tumor-tropic but have much less potential to promote tumors than bone marrow MSCs.
Mesenchymal stem or stromal cells (MSCs) have many potential therapeutic applications including therapies for cancers and tissue damages caused by cancers or radical cancer treatments. However,tissue-derived MSCs such as bone marrow MSCs (BM-MSCs) may promote cancer progression and have considerable donor variations and limited expandability. These issues hinder the potential applications of MSCs,especially those in cancer patients. To circumvent these issues,we derived MSCs from transgene-free human induced pluripotent stem cells (iPSCs) efficiently with a modified protocol that eliminated the need of flow cytometric sorting. Our iPSC-derived MSCs were readily expandable,but still underwent senescence after prolonged culture and did not form teratomas. These iPSC-derived MSCs homed to cancers with efficiencies similar to BM-MSCs but were much less prone than BM-MSCs to promote the epithelial-mesenchymal transition,invasion,stemness,and growth of cancer cells. The observations were probably explained by the much lower expression of receptors for interleukin-1 and TGFβ,downstream protumor factors,and hyaluronan and its cofactor TSG6,which all contribute to the protumor effects of BM-MSCs. The data suggest that iPSC-derived MSCs prepared with the modified protocol are a safer and better alternative to BM-MSCs for therapeutic applications in cancer patients. The protocol is scalable and can be used to prepare the large number of cells required for off-the-shelf" therapies and bioengineering applications."
View Publication
文献
Ong Q et al. ( 2015)
ACS chemical neuroscience 6 1 130--137
U0126 protects cells against oxidative stress independent of its function as a MEK inhibitor.
U0126 is a potent and selective inhibitor of MEK1 and MEK2 kinases. It has been widely used as an inhibitor for the Ras/Raf/MEK/ERK signaling pathway with over 5000 references on the NCBI PubMed database. In particular,U0126 has been used in a number of studies to show that inhibition of the Raf/MEK/ERK pathway protects neuronal cells against oxidative stress. Here,we report that U0126 can function as an antioxidant that protects PC12 cells against a number of different oxidative-stress inducers. This protective effect of U0126 is independent of its function as a MEK inhibitor,as several other MEK inhibitors failed to show similar protective effects. U0126 reduces reactive oxygen species (ROS) in cells. We further demonstrate that U0126 is a direct ROS scavenger in vitro,and the oxidation products of U0126 exhibit fluorescence. Our finding that U0126 is a strong antioxidant signals caution for its future usage as a MEK inhibitor and for interpreting some previous results.
View Publication
文献
Rodrigues G et al. ( 2015)
1283 137--145
Purification of human induced pluripotent stem cell-derived neural precursors using magnetic activated cell sorting.
Neural precursor (NP) cells derived from human induced pluripotent stem cells (hiPSCs),and their neuronal progeny,will play an important role in disease modeling,drug screening tests,central nervous system development studies,and may even become valuable for regenerative medicine treatments. Nonetheless,it is challenging to obtain homogeneous and synchronously differentiated NP populations from hiPSCs,and after neural commitment many pluripotent stem cells remain in the differentiated cultures. Here,we describe an efficient and simple protocol to differentiate hiPSC-derived NPs in 12 days,and we include a final purification stage where Tra-1-60+ pluripotent stem cells (PSCs) are removed using magnetic activated cell sorting (MACS),leaving the NP population nearly free of PSCs.
View Publication
文献
Kia R et al. (MAR 2015)
Toxicological Sciences 144 1 173--185
MicroRNA-122: a novel hepatocyte-enriched in vitro marker of drug-induced cellular toxicity.
Emerging hepatic models for the study of drug-induced toxicity include pluripotent stem cell-derived hepatocyte-like cells (HLCs) and complex hepatocyte-non-parenchymal cellular coculture to mimic the complex multicellular interactions that recapitulate the niche environment in the human liver. However,a specific marker of hepatocyte perturbation,required to discriminate hepatocyte damage from non-specific cellular toxicity contributed by non-hepatocyte cell types or immature differentiated cells is currently lacking,as the cytotoxicity assays routinely used in in vitro toxicology research depend on intracellular molecules which are ubiquitously present in all eukaryotic cell types. In this study,we demonstrate that microRNA-122 (miR-122) detection in cell culture media can be used as a hepatocyte-enriched in vitro marker of drug-induced toxicity in homogeneous cultures of hepatic cells,and a cell-specific marker of toxicity of hepatic cells in heterogeneous cultures such as HLCs generated from various differentiation protocols and pluripotent stem cell lines,where conventional cytotoxicity assays using generic cellular markers may not be appropriate. We show that the sensitivity of the miR-122 cytotoxicity assay is similar to conventional assays that measure lactate dehydrogenase activity and intracellular adenosine triphosphate when applied in hepatic models with high levels of intracellular miR-122,and can be multiplexed with other assays. MiR-122 as a biomarker also has the potential to bridge results in in vitro experiments to in vivo animal models and human samples using the same assay,and to link findings from clinical studies in determining the relevance of in vitro models being developed for the study of drug-induced liver injury.
View Publication