Northcott PA et al. (JUL 2014)
Nature 511 7510 428--434
Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma
Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery,radiation and chemotherapy,posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma,identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet,oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent,highly disparate genomic structural variants,restricted to groups 3 and 4,resulting in specific and mutually exclusive activation of the growth factor independent 1 family proto-oncogenes,GFI1 and GFI1B. Somatic structural variants juxtapose GFI1 or GFI1B coding sequences proximal to active enhancer elements,including super-enhancers,instigating oncogenic activity. Our results,supported by evidence from mouse models,identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate 'enhancer hijacking' as an efficient mechanism driving oncogene activation in a childhood cancer.
View Publication
Y. Li et al. (Oct 2024)
Journal of Experimental & Clinical Cancer Research : CR 43 3
Enhancer looping protein LDB1 modulates MYB expression in T-ALL cell lines in vitro by cooperating with master transcription factors
Despite significant progress in the prognosis of pediatric T-cell acute lymphoblastic leukemia (T-ALL) in recent decades,a notable portion of children still confronts challenges such as treatment resistance and recurrence,leading to limited options and a poor prognosis. LIM domain-binding protein 1 (LDB1) has been confirmed to exert a crucial role in various physiological and pathological processes. In our research,we aim to elucidate the underlying function and mechanisms of LDB1 within the background of T-ALL. Employing short hairpin RNA (shRNA) techniques,we delineated the functional impact of LDB1 in T-ALL cell lines. Through the application of RNA-Seq,CUT&Tag,and immunoprecipitation assays,we scrutinized master transcription factors cooperating with LDB1 and identified downstream targets under LDB1 regulation. LDB1 emerges as a critical transcription factor co-activator in cell lines derived from T-ALL. It primarily collaborates with master transcription factors (ERG,ETV6,IRF1) to cooperatively regulate the transcription of downstream target genes. Both in vitro and in vivo experiments affirm the essential fuction of LDB1 in the proliferation and survival of cell lines derived from T-ALL,with MYB identified as a significant downstream target of LDB1. To sum up,our research establishes the pivotal fuction of LDB1 in the tumorigenesis and progression of T-ALL cell lines. Mechanistic insights reveal that LDB1 cooperates with ERG,ETV6,and IRF1 to modulate the expression of downstream effector genes. Furthermore,LDB1 controls MYB through remote enhancer modulation,providing valuable mechanistic insights into its involvement in the progression of T-ALL. The online version contains supplementary material available at 10.1186/s13046-024-03199-1.
View Publication
Y. Zhan et al. (Jul 2024)
Heliyon 10 14
Enhancing clinical safety in bioengineered-root regeneration: The use of animal component-free medium
Most studies used animal serum-containing medium for bioengineered-root regeneration,but ethical and safety issues raised by animal serum are a potentially significant risk for clinical use. Thus,this study aimed to find a safer method for bioengineered-root regeneration. The biological properties of human dental pulp stem cells (hDPSCs) cultured in animal component-free (ACF) medium or serum-containing medium (5%,10% serum-containing medium,SCM) were compared in vitro . hDPSCs were cultured in a three-dimensional (3D) environment with human-treated dentin matrix (hTDM). The capacity for odontogenesis was compared using quantitative real-time PCR (qPCR) and Western blot. Subsequently,the hDPSCs/hTDM complexes were transplanted into nude mice subcutaneously. Histological staining was then used to verify the regeneration effect in vivo . ACF medium promoted the migration of hDPSCs,but slightly inhibited the proliferation of hDPSCs in the first three days of culture compared to SCM. However,it had no significant effect on cell aging and apoptosis. After 7 days of 3D culture in ACF medium with hTDM,qPCR showed that DMP1,DSPP,OCN,RUNX2,and β-tubulin III were highly expressed in hDPSCs. In addition,3D cultured hDPSCs/hTDM complexes in ACF medium regenerated dentin,pulp,and periodontal ligament-like tissues similar to SCM groups in vivo . ACF medium was proved to be an alternative medium for bioengineered-root regeneration. The strategy of using ACF medium to regenerate bioengineered-root can improve clinical safety for tooth tissue engineering.
View Publication
Zeng J et al. (MAY 2012)
The Journal of Immunology 188 9 4297--4304
Enhancing Immunostimulatory Function of Human Embryonic Stem Cell-Derived Dendritic Cells by CD1d Overexpression
Human embryonic stem cell-derived dendritic cells (hESC-DCs) may potentially provide a platform to generate off-the-shelf" therapeutic cancer vaccines. To apply hESC-DCs for cancer immunotherapy in a semiallogeneic setting�
View Publication
J. W. Schott et al. (sep 2019)
Molecular therapy. Methods {\&} clinical development 14 134--147
Enhancing Lentiviral and Alpharetroviral Transduction of Human Hematopoietic Stem Cells for Clinical Application.
Ex vivo retroviral gene transfer into CD34+ hematopoietic stem and progenitor cells (HSPCs) has demonstrated remarkable clinical success in gene therapy for monogenic hematopoietic disorders. However,little attention has been paid to enhancement of culture and transduction conditions to achieve reliable effects across patient and disease contexts and to maximize potential vector usage and reduce treatment cost. We systematically tested three HSPC culture media manufactured to cGMP and eight previously described transduction enhancers (TEs) to develop a state-of-the-art clinically applicable protocol. Six TEs enhanced lentiviral (LV) and five TEs facilitated alpharetroviral (ARV) CD34+ HSPC transduction when used alone. Combinatorial TE application tested with LV vectors yielded more potent effects,with up to a 5.6-fold increase in total expression of a reporter gene and up to a 3.8-fold increase in VCN. Application of one of the most promising combinations,the poloxamer LentiBOOST and protamine sulfate,for GMP-compliant manufacturing of a clinical-grade advanced therapy medicinal product (ATMP) increased total VCN by over 6-fold,with no major changes in global gene expression profiles or inadvertent loss of CD34+CD90+ HSPC populations. Application of these defined culture and transduction conditions is likely to significantly improve ex vivo gene therapy manufacturing protocols for HSPCs and downstream clinical efficacy.
View Publication
J. Wu et al. ( 2022)
Pathology oncology research : POR 28 1610555
Enhancing Natural Killer Cell-Mediated Cancer Immunotherapy by the Biological Macromolecule Nocardia rubra Cell-Wall Skeleton.
The biological macromolecule Nocardia rubra cell-wall skeleton (Nr-CWS) has well-established immune-stimulating and anti-tumor activities. However,the role of Nr-CWS on natural killer (NK) cells remains unclear. Here,we explore the function and related mechanisms of Nr-CWS on NK cells. Using a tumor-bearing model,we show that Nr-CWS has slightly effect on solid tumor. In addition,using a tumor metastasis model,we show that Nr-CWS suppresses the lung metastasis induced by B16F10 melanoma cells in mice,which indicates that Nr-CWS may up-regulate the function of NK cells. Further investigation demonstrated that Nr-CWS can increase the expression of TRAIL and FasL on spleen NK cells from Nr-CWS treated B16F10 tumor metastasis mice. The spleen index and serum levels of TNF-$\alpha$,IFN-$\gamma$,and IL-2 in B16F10 tumor metastasis mice treated with Nr-CWS were significantly increased. In vitro,the studies using purified or sorted NK cells revealed that Nr-CWS increases the expression of CD69,TRAIL,and FasL,decreases the expression of CD27,and enhances NK cell cytotoxicity. The intracellular expression of IFN-$\gamma$,TNF-$\alpha$,perforin (prf),granzyme-B (GrzB),and secreted TNF-$\alpha$,IFN-$\gamma$,IL-6 of the cultured NK cells were significantly increased after treatment with Nr-CWS. Overall,the findings indicate that Nr-CWS could suppress the lung metastasis induced by B16F10 melanoma cells,which may be exerted through its effect on NK cells by promoting NK cell terminal differentiation (CD27lowCD11bhigh),and up-regulating the production of cytokines and cytotoxic molecules.
View Publication
(Jun 2024)
Molecular Therapy. Nucleic Acids 35 3
Enhancing natural killer cells proliferation and cytotoxicity using imidazole-based lipid nanoparticles encapsulating interleukin-2 mRNA
mRNA applications have undergone unprecedented applications—from vaccination to cell therapy. Natural killer (NK) cells are recognized to have a significant potential in immunotherapy. NK-based cell therapy has drawn attention as allogenic graft with a minimal graft-versus-host risk leading to easier off-the-shelf production. NK cells can be engineered with either viral vectors or electroporation,involving high costs,risks,and toxicity,emphasizing the need for alternative way as mRNA technology. We successfully developed,screened,and optimized novel lipid-based platforms based on imidazole lipids. Formulations are produced by microfluidic mixing and exhibit a size of approximately 100 nm with a polydispersity index of less than 0.2. They are able to transfect NK-92 cells,KHYG-1 cells,and primary NK cells with high efficiency without cytotoxicity,while Lipofectamine Messenger Max and D-Lin-MC3 lipid nanoparticle-based formulations do not. Moreover,the translation of non-modified mRNA was higher and more stable in time compared with a modified one. Remarkably,the delivery of therapeutically relevant interleukin 2 mRNA resulted in extended viability together with preserved activation markers and cytotoxic ability of both NK cell lines and primary NK cells. Altogether,our platforms feature all prerequisites needed for the successful deployment of NK-based therapeutic strategies. Graphical abstract Pichon and colleagues developed imidazole lipids-based mRNA platforms very efficient to transfect both NK-92 cells,KHYG-1 cells and primary NK cells without cytotoxicity. They succeeded to replace IL-2 protein by IL-2 mRNA transfection and obtained NK cells with extended viability with preserved biomarkers and full functionalities to kill target cells.
View Publication
(Sep 2024)
Heliyon 10 18
Enhancing terminal erythroid differentiation in human embryonic stem cells through TRIB3 overexpression
Tribbles pseudokinase 3 (TRIB3) expression significantly increases during terminal erythropoiesis in vivo. However,we found that TRIB3 expression remained relatively low during human embryonic stem cell (hESC) erythropoiesis,particularly in the late stage,where it is typically active. TRIB3 was expressed in megakaryocyte-erythrocyte progenitor cells and its low expression was necessary for megakaryocyte differentiation. Thus,we proposed that the high expression during late stage of erythropoiesis could be the clue for promotion of maturation of hESC-derived erythroid cells. To our knowledge,the role of TRIB3 in the late stage of erythropoiesis remains ambiguous. To address this,we generated inducible TRIB3 overexpression hESCs,named TRIB3tet-on OE H9,based on a Tet-On system. Then,we analyzed hemoglobin expression,condensed chromosomes,organelle clearance,and enucleation with or without doxycycline treatment. TRIB3tet-on OE H9 cells generated erythrocytes with a high proportion of orthochromatic erythroblast in flow cytometry,enhanced hemoglobin and related protein expression in Western blot,decreased nuclear area size,promoted enucleation rate,decreased lysosome and mitochondria number,more colocalization of LC3 with LAMP1 (lysosome marker) and TOM20 (mitochondria marker) and up-regulated mitophagy-related protein expression after treatment with 2 ?g/mL doxycycline. Our results showed that TRIB3 overexpression during terminal erythropoiesis may promote the maturation of erythroid cells. Therefore,our study delineates the role of TRIB3 in terminal erythropoiesis,and reveals TRIB3 as a key regulator of UPS and downstream mitophagy by ensuring appropriate mitochondrial clearance during the compaction of chromatin. Highlights•TRIB3 boosts erythroid cell maturation.•Key insights into erythropoiesis from hESCs.•Enhanced ubiquitin-proteasome system and downstream mitophagy in erythroid differentiation.
View Publication
T. Baba et al. (Aug 2025)
Cell Death & Disease 16 1
Accumulating evidence suggests that mitogenic signaling during cell cycle arrest can lead to severe cytotoxic outcomes,such as senescence,though the underlying mechanisms remain poorly understood. Here,we explored the link between cell cycle dynamics and the formation of PML-nuclear bodies (PML-NBs),intranuclear structures known to mediate cellular stress responses. Our findings demonstrate that PML-NBs increase their number during interphase arrest. Moreover,the activation of mitogenic ERK signaling by all-trans retinoic acid (ATRA) during CDK4/6 inhibitor-induced cell cycle arrest synergistically enhances the formation of larger PML-NBs by associating with SUMO. This enlargement,triggered by the simultaneous engagement of opposing cell cycle signals,leads to potent cytotoxicity accompanied by either terminal differentiation or apoptosis,depending on the cell type,across multiple acute myeloid leukemia (AML) cell lines. Importantly,in an AML mouse model,this combination treatment significantly improved therapeutic efficacy with minimal effects on normal hematopoiesis. Our results introduce conflicting cell cycle signal-induced cytotoxicity as a promising therapeutic strategy for AML. Subject terms: PML bodies,Apoptosis
View Publication
Liu L et al. (OCT 2014)
Cell death & disease 5 10 e1471
Enrichment of c-Met+ tumorigenic stromal cells of giant cell tumor of bone and targeting by cabozantinib.
Giant cell tumor of bone (GCTB) is a very rare tumor entity,which is little examined owing to the lack of established cell lines and mouse models and the restriction of available primary cell lines. The stromal cells of GCTB have been made responsible for the aggressive growth and metastasis,emphasizing the presence of a cancer stem cell population. To identify and target such tumor-initiating cells,stromal cells were isolated from eight freshly resected GCTB tissues. Tumorigenic properties were examined by colony and spheroid formation,differentiation,migration,MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay,immunohistochemistry,antibody protein array,Alu in situ hybridization,FACS analysis and xenotransplantation into fertilized chicken eggs and mice. A sub-population of the neoplastic stromal cells formed spheroids and colonies,differentiated to osteoblasts,migrated to wounded regions and expressed the metastasis marker CXC-chemokine receptor type 4,indicating self-renewal,invasion and differentiation potential. Compared with adherent-growing cells,markers for pluripotency,stemness and cancer progression,including the CSC surface marker c-Met,were enhanced in spheroidal cells. This c-Met-enriched sub-population formed xenograft tumors in fertilized chicken eggs and mice. Cabozantinib,an inhibitor of c-Met in phase II trials,eliminated CSC features with a higher therapeutic effect than standard chemotherapy. This study identifies a c-Met(+) tumorigenic sub-population within stromal GCTB cells and suggests the c-Met inhibitor cabozantinib as a new therapeutic option for targeted elimination of unresectable or recurrent GCTB.
View Publication
Rezania A et al. (NOV 2013)
STEM CELLS 31 11 2432--2442
Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo
Human embryonic stem cells (hESCs) are considered a potential alternative to cadaveric islets as a source of transplantable cells for treating patients with diabetes. We previously described a differentiation protocol to generate pancreatic progenitor cells from hESCs,composed of mainly pancreatic endoderm (PDX1/NKX6.1-positive),endocrine precursors (NKX2.2/synaptophysin-positive,hormone/NKX6.1-negative),and polyhormonal cells (insulin/glucagon-positive,NKX6.1-negative). However,the relative contributions of NKX6.1-negative versus NKX6.1-positive cell fractions to the maturation of functional β-cells remained unclear. To address this question,we generated two distinct pancreatic progenitor cell populations using modified differentiation protocols. Prior to transplant,both populations contained a high proportion of PDX1-expressing cells (˜85%-90%) but were distinguished by their relatively high (˜80%) or low (˜25%) expression of NKX6.1. NKX6.1-high and NKX6.1-low progenitor populations were transplanted subcutaneously within macroencapsulation devices into diabetic mice. Mice transplanted with NKX6.1-low cells remained hyperglycemic throughout the 5-month post-transplant period whereas diabetes was reversed in NKX6.1-high recipients within 3 months. Fasting human C-peptide levels were similar between groups throughout the study,but only NKX6.1-high grafts displayed robust meal-,glucose- and arginine-responsive insulin secretion as early as 3 months post-transplant. NKX6.1-low recipients displayed elevated fasting glucagon levels. Theracyte devices from both groups contained almost exclusively pancreatic endocrine tissue,but NKX6.1-high grafts contained a greater proportion of insulin-positive and somatostatin-positive cells,whereas NKX6.1-low grafts contained mainly glucagon-expressing cells. Insulin-positive cells in NKX6.1-high,but not NKX6.1-low grafts expressed nuclear MAFA. Collectively,this study demonstrates that a pancreatic endoderm-enriched population can mature into highly functional β-cells with only a minor contribution from the endocrine subpopulation.
View Publication
Umebayashi D et al. (MAY 2016)
Stem cells and development 25 9 712--728
Enrichment of Oligodendrocyte Progenitors from Differentiated Neural Precursors by Clonal Sphere Preparations.
Remyelination is the goal of potential cell transplantation therapies for demyelinating diseases and other central nervous system injuries. Transplantation of oligodendrocyte precursor cells (OPCs) can result in remyelination in the central nervous system,and induced pluripotent stem cells (iPSCs) are envisioned to be an autograft cell source of transplantation therapy for many cell types. However,it remains time-consuming and difficult to generate OPCs from iPSCs. Clonal sphere preparations are reliable cell culture methods for purifying select populations of proliferating cells. To make clonal neurospheres from human embryonic stem cell (ESC)/iPSC colonies,we have found that a monolayer differentiation phase helps to increase the numbers of neural precursor cells. Indeed,we have compared a direct isolation of neural stem cells from human ESC/iPSC colonies (protocol 1) with monolayer neural differentiation,followed by clonal neural stem cell sphere preparations (protocol 2). The two-step method combining monolayer neuralization,followed by clonal sphere preparations,is more useful than direct sphere preparations in generating mature human oligodendrocytes. The initial monolayer culture stage appears to bias cells toward the oligodendrocyte lineage. This method of deriving oligodendrocyte lineage spheres from iPSCs represents a novel strategy for generating OPCs.
View Publication