Essential role for Ptpn11 in survival of hematopoietic stem and progenitor cells.
Src homology 2 domain-containing phosphatase 2 (Shp2),encoded by Ptpn11,is a member of the nonreceptor protein-tyrosine phosphatase family,and functions in cell survival,proliferation,migration,and differentiation in many tissues. Here we report that loss of Ptpn11 in murine hematopoietic cells leads to bone marrow aplasia and lethality. Mutant mice show rapid loss of hematopoietic stem cells (HSCs) and immature progenitors of all hematopoietic lineages in a gene dosage-dependent and cell-autonomous manner. Ptpn11-deficient HSCs and progenitors undergo apoptosis concomitant with increased Noxa expression. Mutant HSCs/progenitors also show defective Erk and Akt activation in response to stem cell factor and diminished thrombopoietin-evoked Erk activation. Activated Kras alleviates the Ptpn11 requirement for colony formation by progenitors and cytokine/growth factor responsiveness of HSCs,indicating that Ras is functionally downstream of Shp2 in these cells. Thus,Shp2 plays a critical role in controlling the survival and maintenance of HSCs and immature progenitors in vivo.
View Publication
Ghandour H et al. (NOV 2007)
Blood 110 10 3682--90
Essential role for Rap1 GTPase and its guanine exchange factor CalDAG-GEFI in LFA-1 but not VLA-4 integrin mediated human T-cell adhesion.
Regulated adhesion of T cells by the integrins LFA-1 (lymphocyte function-associated antigen-1) and VLA-4 (very late antigen-4) is essential for T-cell trafficking. The small GTPase Rap1 is a critical activator of both integrins in murine lymphocytes and T-cell lines. Here we examined the contribution of the Rap1 regulatory pathway in integrin activation in primary CD3(+) human T cells. We demonstrate that inactivation of Rap1 GTPase in human T cells by expression of SPA1 or Rap1GAP blocked stromal cell-derived factor-1alpha (SDF-1alpha)-stimulated LFA-1-ICAM-1 (intercellular adhesion molecule-1) interactions and LFA-1 affinity modulation but unexpectedly did not significantly affect binding of VLA-4 to its ligand VCAM-1 (vascular cell adhesion molecule 1). Importantly,silencing of the Rap1 guanine exchange factor CalDAG-GEFI inhibited SDF-1alpha- and phorbol 12-myristate 13-acetate (PMA)-induced adhesion to ICAM-1 while having no effect on adhesion to VCAM-1. Pharmacologic inhibition of Phospholipase C (PLC) blocked Rap1 activation and inhibited cell adhesion and polarization on ICAM-1 and VCAM-1. Protein kinase C (PKC) inhibition led to enhanced levels of active Rap1 concomitantly with increased T-cell binding to ICAM-1,whereas adhesion to VCAM-1 was reduced. Thus,PLC/CalDAG-GEFI regulation of Rap1 is selectively required for chemokine- and PMA-induced LFA-1 activation in human T cells,whereas alternate PLC- and PKC-dependent mechanisms are involved in the regulation of VLA-4.
View Publication
Podar K et al. (FEB 2003)
The Journal of biological chemistry 278 8 5794--801
Essential role of caveolae in interleukin-6- and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells.
Caveolae,specialized flask-shaped lipid rafts on the cell surface,are composed of cholesterol,sphingolipids,and structural proteins termed caveolins; functionally,these plasma membrane microdomains have been implicated in signal transduction and transmembrane transport. In the present study,we examined the role of caveolin-1 in multiple myeloma cells. We show for the first time that caveolin-1,which is usually absent in blood cells,is expressed in multiple myeloma cells. Analysis of myeloma cell-derived plasma membrane fractions shows that caveolin-1 is co-localized with interleukin-6 receptor signal transducing chain gp130 and with insulin-like growth factor-I receptor. Cholesterol depletion by beta-cyclodextrin results in the loss of caveola structure in myeloma cells,as shown by transmission electron microscopy,and loss of caveolin-1 function. Interleukin-6 and insulin-like growth factor-I,growth and survival factors in multiple myeloma,induce caveolin-1 phosphorylation,which is abrogated by pre-treatment with beta-cyclodextrin. Importantly,inhibition of caveolin-1 phosphorylation blocks both interleukin-6-induced protein complex formation with caveolin-1 and downstream activation of the phosphatidylinositol 3-kinase/Akt-1 pathway. beta-Cyclodextrin also blocks insulin-like growth factor-I-induced tyrosine phosphorylation of insulin-responsive substrate-1 and downstream activation of the phosphatidylinositol 3-kinase/Akt-1 pathway. Therefore,cholesterol depletion by beta-cyclodextrin abrogates both interleukin-6- and insulin-like growth factor-I-triggered multiple myeloma cell survival via negative regulation of caveolin-1. Taken together,this study identifies caveolin-1 and other structural membrane components as potential new therapeutic targets in multiple myeloma.
View Publication
Fujii T et al. (SEP 2010)
The Journal of biological chemistry 285 39 30214--23
Essential role of p400/mDomino chromatin-remodeling ATPase in bone marrow hematopoiesis and cell-cycle progression.
p400/mDomino is an ATP-dependent chromatin-remodeling protein that catalyzes the deposition of histone variant H2A.Z into nucleosomes to regulate gene expression. We previously showed that p400/mDomino is essential for embryonic development and primitive hematopoiesis. Here we generated a conditional knock-out mouse for the p400/mDomino gene and investigated the role of p400/mDomino in adult bone marrow hematopoiesis and in the cell-cycle progression of embryonic fibroblasts. The Mx1-Cre- mediated deletion of p400/mDomino resulted in an acute loss of nucleated cells in the bone marrow,including committed myeloid and erythroid cells as well as hematopoietic progenitor and stem cells. A hematopoietic colony assay revealed a drastic reduction in colony-forming activity after the deletion of p400/mDomino. Moreover,the loss of p400/mDomino in mouse embryonic fibroblasts (MEFs) resulted in strong growth inhibition. Cell-cycle analysis revealed that the mDomino-deficient MEFs exhibited a pleiotropic cell-cycle defect at the S and G(2)/M phases,and polyploid and multi-nucleated cells with micronuclei emerged. DNA microarray analysis revealed that the p400/mDomino deletion from MEFs caused the impaired expression of many cell-cycle-regulatory genes,including G(2)/M-specific genes targeted by the transcription factors FoxM1 and c-Myc. These results indicate that p400/mDomino plays a key role in cellular proliferation by controlling the expression of cell-cycle-regulatory genes.
View Publication
Okada T et al. ( 1994)
The Journal of biological chemistry 269 5 3568--3573
Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin.
Significant activity of phosphatidylinositol 3-kinase (PI 3-kinase) was detected in the membrane fractions,or in the immunoprecipitates prepared with anti-phosphotyrosine antibodies,from rat adipocytes that had been incubated with insulin for 20 min. The PI 3-kinase activity in these preparations as well as in the whole cell lysates of adipocytes not treated with insulin was inhibited by the addition of wortmannin,a fungal metabolite,to the enzyme assay mixture. The inhibition was dependent on the inhibitor concentration with IC50 being less than 10 nM and perfect inhibition at 100 nM. The effect of insulin to induce membrane PI 3-kinase activity was mostly abolished,but its effects to tyrosine-phosphorylate the beta-subunit of the insulin receptor or other cellular substrate proteins including insulin-receptor-substrate-1 were not at all antagonized,by wortmannin added to the cell incubation medium. Insulin stimulation of cellular 2-deoxyglucose uptake and inhibition of isoproterenol-induced lipolysis observable in adipocytes under the same conditions were also antagonized by wortmannin added in the same concentration range as used for the inhibition of insulin-susceptible PI 3-kinase. It is concluded,therefore,that activation of wortmannin-sensitive PI 3-kinase plays a pivotal role in the intracellular signaling pathways arising from the insulin receptor autophosphorylation and leading to certain metabolic responses.
View Publication
Fang L et al. (MAY 2008)
The Journal of Experimental Medicine 205 5 1037--48
Essential role of TNF receptor superfamily 25 (TNFRSF25) in the development of allergic lung inflammation
We identify the tumor necrosis factor receptor superfamily 25 (TNFRSF25)/TNFSF15 pair as critical trigger for allergic lung inflammation,which is a cardinal feature of asthma. TNFRSF25 (TNFR25) signals are required to exert T helper cell 2 (Th2) effector function in Th2-polarized CD4 cells and co-stimulate interleukin (IL)-13 production by glycosphingolipid-activated NKT cells. In vivo,antibody blockade of TNFSF15 (TL1A),which is the ligand for TNFR25,inhibits lung inflammation and production of Th2 cytokines such as IL-13,even when administered days after airway antigen exposure. Similarly,blockade of TNFR25 by a dominant-negative (DN) transgene,DN TNFR25,confers resistance to lung inflammation in mice. Allergic lung inflammation-resistant,NKT-deficient mice become susceptible upon adoptive transfer of wild-type NKT cells,but not after transfer of DN TNFR25 transgenic NKT cells. The TNFR25/TL1A pair appears to provide an early signal for Th2 cytokine production in the lung,and therefore may be a drug target in attempts to attenuate lung inflammation in asthmatics.
View Publication
N. H. Overgaard et al. ( 2015)
Frontiers in genetics 6 286
Establishing the pig as a large animal model for vaccine development against human cancer.
Immunotherapy has increased overall survival of metastatic cancer patients,and cancer antigens are promising vaccine targets. To fulfill the promise,appropriate tailoring of the vaccine formulations to mount in vivo cytotoxic T cell (CTL) responses toward co-delivered cancer antigens is essential. Previous development of therapeutic cancer vaccines has largely been based on studies in mice,and the majority of these candidate vaccines failed to induce therapeutic responses in the subsequent human clinical trials. Given that antigen dose and vaccine volume in pigs are translatable to humans and the porcine immunome is closer related to the human counterpart,we here introduce pigs as a supplementary large animal model for human cancer vaccine development. IDO and RhoC,both important in human cancer development and progression,were used as vaccine targets and 12 pigs were immunized with overlapping 20mer peptides spanning the entire porcine IDO and RhoC sequences formulated in CTL-inducing adjuvants: CAF09,CASAC,Montanide ISA 51 VG,or PBS. Taking advantage of recombinant swine MHC class I molecules (SLAs),the peptide-SLA complex stability was measured for 198 IDO- or RhoC-derived 9-11mer peptides predicted to bind to SLA-1(*)04:01,-1(*)07:02,-2(*)04:01,-2(*)05:02,and/or -3(*)04:01. This identified 89 stable (t½ ≥ 0.5 h) peptide-SLA complexes. By IFN-$\gamma$ release in PBMC cultures we monitored the vaccine-induced peptide-specific CTL responses,and found responses to both IDO- and RhoC-derived peptides across all groups with no adjuvant being superior. These findings support the further use of pigs as a large animal model for vaccine development against human cancer.
View Publication
Palmer JA et al. (AUG 2013)
Birth Defects Research Part B - Developmental and Reproductive Toxicology 98 4 343--363
Establishment and assessment of a new human embryonic stem cell-based biomarker assay for developmental toxicity screening
A metabolic biomarker-based in vitro assay utilizing human embryonic stem (hES) cells was developed to identify the concentration of test compounds that perturbs cellular metabolism in a manner indicative of teratogenicity. This assay is designed to aid the early discovery-phase detection of potential human developmental toxicants. In this study,metabolomic data from hES cell culture media were used to assess potential biomarkers for development of a rapid in vitro teratogenicity assay. hES cells were treated with pharmaceuticals of known human teratogenicity at a concentration equivalent to their published human peak therapeutic plasma concentration. Two metabolite biomarkers (ornithine and cystine) were identified as indicators of developmental toxicity. A targeted exposure-based biomarker assay using these metabolites,along with a cytotoxicity endpoint,was then developed using a 9-point dose–response curve. The predictivity of the new assay was evaluated using a separate set of test compounds. To illustrate how the assay could be applied to compounds of unknown potential for developmental toxicity,an additional 10 compounds were evaluated that do not have data on human exposure during pregnancy,but have shown positive results in animal developmental toxicity studies. The new assay identified the potential developmental toxicants in the test set with 77% accuracy (57% sensitivity,100% specificity). The assay had a high concordance (≥75%) with existing in vivo models,demonstrating that the new assay can predict the developmental toxicity potential of new compounds as part of discovery phase testing and provide a signal as to the likely outcome of required in vivo tests.
View Publication
Binder ZA et al. ( 2016)
PloS one 11 3 e0150271
Establishment and Biological Characterization of a Panel of Glioblastoma Multiforme (GBM) and GBM Variant Oncosphere Cell Lines.
OBJECTIVE Human tumor cell lines form the basis of the majority of present day laboratory cancer research. These models are vital to studying the molecular biology of tumors and preclinical testing of new therapies. When compared to traditional adherent cell lines,suspension cell lines recapitulate the genetic profiles and histologic features of glioblastoma multiforme (GBM) with higher fidelity. Using a modified neural stem cell culture technique,here we report the characterization of GBM cell lines including GBM variants. METHODS Tumor tissue samples were obtained intra-operatively and cultured in neural stem cell conditions containing growth factors. Tumor lines were characterized in vitro using differentiation assays followed by immunostaining for lineage-specific markers. In vivo tumor formation was assayed by orthotopic injection in nude mice. Genetic uniqueness was confirmed via short tandem repeat (STR) DNA profiling. RESULTS Thirteen oncosphere lines derived from GBM and GBM variants,including a GBM with PNET features and a GBM with oligodendroglioma component,were established. All unique lines showed distinct genetic profiles by STR profiling. The lines assayed demonstrated a range of in vitro growth rates. Multipotency was confirmed using in vitro differentiation. Tumor formation demonstrated histologic features consistent with high grade gliomas,including invasion,necrosis,abnormal vascularization,and high mitotic rate. Xenografts derived from the GBM variants maintained histopathological features of the primary tumors. CONCLUSIONS We have generated and characterized GBM suspension lines derived from patients with GBMs and GBM variants. These oncosphere cell lines will expand the resources available for preclinical study.
View Publication
Schiavo R et al. ( )
Anticancer research 27 5A 3273--8
Establishment and characterization of a new Ewing's sarcoma cell line from a malignant pleural effusion.
BACKGROUND: Ewing's sarcoma cell lines may represent a good in vitro model for the understanding of tumor biology in this heterogeneous group of diseases. In the present study,we report the establishment and characterization of a primary Ewing's sarcoma cell line (LDS-Falck 01). MATERIALS AND METHODS: LDS-Falck 01 was generated from a malignant pleural effusion of a patient with metastatic peripheral primitive neuroectodermal tumor arising from the chest wall. Extensive characterization of the cells was accomplished using immunocytochemical,RT-PCR and cytogenetic studies. RESULTS: In vitro LDS-Falck 01 cells had both anchorage-dependent and -independent growth patterns. Immunocytochemical studies showed that cells were PAS-,vimentin-,CD99- and NSE-positive,EGFR- and CD117-negative. Cytogenetic analysis revealed a complex hyperdiploid karyotype with multiple chromosomal aberrations including an unbalanced translocation t(11;22)(q24;q12). The EWS/FLI1 chimeric transcript type 1 was detected. CONCLUSION: This cell line may represent a valid tool for investigating the biomolecular characteristics of this group of neoplasms and their sensitivity to therapeutic agents.
View Publication
Kitamura T et al. (AUG 1989)
Journal of cellular physiology 140 2 323--34
Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin.
We have established a novel cell line,designated as TF-1,from a patient with erythroleukemia,which showed complete growth dependency on granulocyte-macrophage colony-stimulating factor (GM-CSF) or on interleukin-3 (IL-3) and carried a homogeneous chromosomal abnormality (54X). Erythropoietin (EPO) also sustained the short-term growth of TF-1,but did not induce erythroid differentiation. These three hematopoietic growth factors acted on TF-1 synergistically. Transforming growth factor-beta and interferons inhibited the factor-dependent growth of TF-1 cells in a dose-dependent fashion,and monocyte-colony stimulating factor and interkeukin-1 enhanced the GM-CSF-dependent growth of TF-1. Ultrastructural studies revealed some very immature features in this cell line. Although TF-1 cells do not express glycophorin A or carbonyl anhydrase I,the morphological and cytochemical features,and the constitutive expression of globin genes,indicate the commitment of TF-1 to erythroid lineage. When induced to differentiate,TF-1 entered two different pathways. Specifically,hemin and delta-aminolevulinic acid induced hemoglobin synthesis,whereas TPA induced dramatic differentiation of TF-1 into macrophage-like cells. In summary,TF-1 is a cell line of immature erythroid origin that requires GM-CSF,IL-3,or EPO for its growth and that has the ability to undergo differentiation into either more mature erythroid cells or into macrophage-like cells. TF-1 is a useful tool for analyzing the human receptors for IL-3,GM-CSF,and EPO or the signal transduction of these hemopoietic growth factors.
View Publication
A. W. Oehm et al. (Mar 2025)
Scientific Reports 15
Establishment and validation of red fox ( Vulpes vulpes ) airway epithelial cell cultures at the air-liquid-interface
The airway epithelium represents a central barrier against pathogens and toxins while playing a crucial role in modulating the immune response within the upper respiratory tract. Understanding these mechanisms is particularly relevant for red foxes ( Vulpes vulpes ),which serve as reservoirs for various zoonotic pathogens like rabies or the fox tapeworm ( Echinococcus multilocularis ). The study aimed to develop,establish,and validate an air-liquid interface (ALI) organoid model of the fox respiratory tract using primary airway epithelial cells isolated from the tracheas and main bronchi of hunted red foxes. The resulting ALI cultures exhibited a structurally differentiated,pseudostratified epithelium,characterised by ciliated cells,mucus secretion,and tight junctions,as confirmed through histological and immunohistochemical analysis. Functional assessments using a paracellular permeability assay and measurement of transepithelial electrical resistance,demonstrated a tight epithelial barrier. The potential of model’s utility for studying innate immune responses to respiratory infections was validated by exposing the cultures to lipopolysaccharide,phorbol-12-myristate-13-acetate and ionomycin,and nematode somatic antigens. Quantitative PCR revealed notable changes in the expression of pro-inflammatory cytokines TNF and IL-33. This in vitro model represents a significant advancement in respiratory research for non-classical species that may act as important wildlife reservoirs for a range of zoonotic pathogens.
View Publication