Nicolini FE et al. (AUG 2002)
Blood 100 4 1257--64
Expression of a human beta-globin transgene in erythroid cells derived from retrovirally transduced transplantable human fetal liver and cord blood cells.
Transfer of therapeutic genes to human hematopoietic stem cells (HSCs) using complex vectors at clinically relevant efficiencies remains a major challenge. Recently we described a stable retroviral vector that sustains long-term expression of green fluorescent protein (GFP) and a human beta-globin gene in the erythroid progeny of transduced murine HSCs. We now report the efficient transduction of primitive human CD34(+) fetal liver or cord blood cells with this vector and expression of the beta-globin transgene in the erythroid progeny of these human cells for at least 2 months. After growth factor prestimulation and then a 2- to 3-day exposure to the virus,35% to 55% GFP(+) progeny were seen in assays of transduced colony-forming cells,primitive erythroid precursors that generate large numbers of glycophorin A(+) cells in 3-week suspension cultures,and 6-week long-term culture-initiating cells. In immunodeficient mice injected with unselected infected cells,5% to 15% of the human cells regenerated in the marrow (including the erythroid cells) were GFP(+) 3 and 6 weeks after transplantation. Importantly,the numbers of GFP(+) human lymphoid and either granulopoietic or erythroid cells in individual mice 6 weeks after transplantation were significantly correlated,indicative of the initial transduction of human multipotent cells with in vivo repopulating activity. Expression of the transduced beta-globin gene in human cells obtained directly from the mice or after their differentiation into erythroid cells in vitro was demonstrated by reverse transcriptase-polymerase chain reaction using specific primers. These experiments represent a significant step toward the realization of a gene therapy approach for human beta-globin gene disorders.
View Publication
(Jul 2024)
Frontiers in Immunology 15
Expression of a stress-inducible heme oxygenase-1 in NK cells is maintained in the process of human aging
IntroductionHeme oxygenase-1 (HO-1) is a stress-inducible heat shock protein (HSP32) that exerts cytoprotective effects against oxidative stress and inflammation,and is involved in the maintenance of cellular homeostasis. This study aimed to evaluate the expression of HO-1 in natural killer (NK) cells from individuals of different age groups after stimulation with various factors,and to analyze the relationships between the concentration of this cytoprotective protein and parameters corresponding to oxidative stress and inflammation,that is,NOD-like receptor protein 3 (NLRP3),glutathione (GSH),GSH disulfide (GSSG),and interleukin 6 (IL-6).MethodsThe study population comprised three age groups: young adults (age range,19–23 years),older adults aged under 85 years (age range,73–84 years),and older adults aged over 85 years (age range,85–92 years). NLRP3,GSH,and GSSG concentrations were measured in serum,whereas the HO-1 concentration and IL-6 expression were studied in NK cells cultivated for 48 h and stimulated with IL-2,lipopolysaccharide (LPS),or phorbol 12-myristate 13-acetate (PMA) with ionomycin.ResultsThe analysis of serum NLRP3,GSH,and GSSG concentrations revealed no statistically significant differences among the studied age groups. However,some typical trends of aging were observed,such as a decrease in GSH concentration and an increase in both GSSG level,and GSSG/GSH ratio. The highest basal expression of IL-6 and lowest basal content of HO-1 were found in NK cells of adults over 85 years of age. The NK cells in this age group also showed the highest sensitivity to stimulation with the applied factors. Moreover,statistically significant negative correlations were observed between HO-1 and IL-6 expression levels in the studied NK cells.ConclusionsThese results showed that NK cells can express HO-1 at a basal level,which was significantly increased in activated cells,even in the oldest group of adults. The reciprocal relationship between HO-1 and IL-6 expression suggests a negative feedback loop between these parameters.
View Publication
Kryczek I et al. (JAN 2012)
International journal of cancer. Journal international du cancer 130 1 29--39
Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells.
Identification of cancer stem cells is crucial for advancing cancer biology and therapy. Several markers including CD24,CD44,CD117,CD133,the G subfamily of ATP-binding cassette transporters (ABCG),epithelial specific antigen (ESA) and aldehyde dehydrogenase (ALDH) are used to identify and investigate human epithelial cancer stem cells in the literature. We have now systemically analyzed and compared the expression of these markers in fresh ovarian epithelial carcinomas. Although the expression levels of these markers were unexpectedly variable and partially overlapping in fresh ovarian cancer cells from different donors,we reliably detected important levels of CD133 and ALDH in the majority of fresh ovarian cancer. Furthermore,most of these stem cell markers including CD133 and ALDH were gradually lost following in vitro passage of primary tumor cells. However,the expression of ALDH and CD133,but not CD24,CD44 and CD117,could be partially rescued by the in vitro serum-free and sphere cultures and by the in vivo passage in the immune-deficient xenografts. ALDH+ and CD133+ cells formed three-dimensional spheres more efficiently than their negative counterparts. These sphere-forming cells expressed high levels of stem cell core gene transcripts and could be expanded and form additional spheres in long-term culture. ALDH+,CD133+ and ALDH+ CD133+ cells from fresh tumors developed larger tumors more rapidly than their negative counterparts. This property was preserved in the xenografted tumors. Altogether,the data suggest that ALDH+ and CD133+ cells are enriched with ovarian cancer-initiating (stem) cells and that ALDH and CD133 may be widely used as reliable markers to investigate ovarian cancer stem cell biology.
View Publication
(Mar 2024)
Nature Communications 15
Expression of ALS-PFN1 impairs vesicular degradation in iPSC-derived microglia
Microglia play a pivotal role in neurodegenerative disease pathogenesis,but the mechanisms underlying microglia dysfunction and toxicity remain to be elucidated. To investigate the effect of neurodegenerative disease-linked genes on the intrinsic properties of microglia,we studied microglia-like cells derived from human induced pluripotent stem cells (iPSCs),termed iMGs,harboring mutations in profilin-1 (PFN1) that are causative for amyotrophic lateral sclerosis (ALS). ALS-PFN1 iMGs exhibited evidence of lipid dysmetabolism,autophagy dysregulation and deficient phagocytosis,a canonical microglia function. Mutant PFN1 also displayed enhanced binding affinity for PI3P,a critical signaling molecule involved in autophagic and endocytic processing. Our cumulative data implicate a gain-of-toxic function for mutant PFN1 within the autophagic and endo-lysosomal pathways,as administration of rapamycin rescued phagocytic dysfunction in ALS-PFN1 iMGs. These outcomes demonstrate the utility of iMGs for neurodegenerative disease research and implicate microglial vesicular degradation pathways in the pathogenesis of these disorders. Mutations in profilin 1 (PFN1),which modulates actin dynamics,are associated with ALS. Here the authors show that expression of ALS-PFN1 is sufficient to induce deficits in human microglia-like cells,including impaired phagocytosis and lipid metabolism,and that gain-of-function interactions between ALS-PFN1 and PI3P may underlie these deficits.
View Publication
J. Robert et al. (May 2025)
Nature Communications 16
Expression of an interleukin-2 partial agonist enhances regulatory T cell persistence and efficacy in mouse autoimmune models
Regulatory T (Treg)-based cell therapy holds promise for autoimmune and inflammatory diseases,yet challenges remain regarding the functional stability and persistence of transferred Tregs. Here we engineer Tregs to express a partial agonist form of IL-2 (IL-2pa) to enhance persistence while avoiding toxicity from excessive signaling. Mouse Tregs expressing wild-type IL-2 (Tregs-IL2wt) have only a transient growth advantage,limited by toxicity from likely excessive signaling. By contrast,mouse Tregs-IL2pa exhibit sustained expansion,long-term survival in immunocompetent mice for over a year,and bystander expansion of endogenous Tregs. Tregs-IL2pa maintain a stable activated phenotype,Treg-specific demethylation,and a diverse TCR repertoire. In vivo,prophylactic transfer of Tregs-IL2pa ameliorates multi-organ autoimmunity in a Treg depletion-induced mouse autoimmune model. Lastly,compared with control Treg,human Tregs-IL2pa show enhanced survival in the IL-2-depleted environment of immune-deficient mice and improved control of xenogeneic graft-versus-host disease. Our results thus show that IL-2pa self-sufficiency enhances the stability,durability and efficacy of Treg therapies in preclinical settings. Subject terms: Cell delivery,Regulatory T cells,Autoimmune diseases,Interleukins
View Publication
Ross DD et al. (JUL 2000)
Blood 96 1 365--8
Expression of breast cancer resistance protein in blast cells from patients with acute leukemia.
Breast cancer resistance protein (BCRP) is a novel member of the adenosine triphosphate-binding cassette superfamily of transport proteins. Transfection and enforced expression of BCRP in drug-sensitive cells confer resistance to mitoxantrone,doxorubicin,daunorubicin,and topotecan. We studied blast cells from 21 acute leukemia patients (20 acute myeloid leukemia,1 acute lymphocytic leukemia) for the expression of BCRP mRNA using a quantitative reverse-transcription polymerase chain reaction assay. BCRP mRNA expression varied more than 1000-fold among the samples tested,with low or barely detectable expression in half of the samples. Seven samples (33%) had relatively high expression of BCRP mRNA. High expression of BCRP did not correlate strongly with high expression of P-glycoprotein,suggesting that BCRP may cause resistance to certain antileukemic drugs in P-glycoprotein-negative cases. High expression of BCRP mRNA is sufficiently frequent in AML to warrant more extensive investigations to determine the relation of disease subtype and treatment outcome to BCRP expression and function.
View Publication
Carroll VA et al. (OCT 2016)
Proceedings of the National Academy of Sciences of the United States of America
Expression of HIV-1 matrix protein p17 and association with B-cell lymphoma in HIV-1 transgenic mice.
HIV-1 infection is associated with increased risk for B-cell lymphomas. How HIV infection promotes the development of lymphoma is unclear,but it may involve chronic B-cell activation,inflammation,and/or impaired immunity,possibly leading to a loss of control of oncogenic viruses and reduced tumor immunosurveillance. We hypothesized that HIV structural proteins may contribute to lymphomagenesis directly,because they can persist long term in lymph nodes in the absence of viral replication. The HIV-1 transgenic mouse Tg26 carries a noninfectious HIV-1 provirus lacking part of the gag-pol region,thus constituting a model for studying the effects of viral products in pathogenesis. Approximately 15% of Tg26 mice spontaneously develop leukemia/lymphoma. We investigated which viral proteins are associated with the development of leukemia/lymphoma in the Tg26 mouse model,and performed microarray analysis on RNA from spleen and lymph nodes to identify potential mechanisms of lymphomagenesis. Of the viral proteins examined,only expression of HIV-1 matrix protein p17 was associated with leukemia/lymphoma development and was highly expressed in bone marrow before disease. The tumor cells resembled pro-B cells,and were CD19(+)IgM(-)IgD(-)CD93(+)CD43(+)CD21(-)CD23(-)VpreB(+)CXCR4(+) Consistent with the pro-B-cell stage of B-cell development,microarray analysis revealed enrichment of transcripts,including Rag1,Rag2,CD93,Vpreb1,Vpreb3,and Igll1 We confirmed RAG1 expression in Tg26 tumors,and hypothesized that HIV-1 matrix protein p17 may directly induce RAG1 in B cells. Stimulation of human activated B cells with p17 enhanced RAG1 expression in three of seven donors,suggesting that intracellular signaling by p17 may lead to genomic instability and transformation.
View Publication
Yalcintepe L et al. (NOV 2006)
Blood 108 10 3530--7
Expression of interleukin-3 receptor subunits on defined subpopulations of acute myeloid leukemia blasts predicts the cytotoxicity of diphtheria toxin interleukin-3 fusion protein against malignant progenitors that engraft in immunodeficient mice.
The interleukin-3 receptor (IL-3R) subunits are overexpressed on acute myeloid leukemia (AML) blasts compared with normal hematopoietic cells and are thus potential targets for novel therapeutic agents. Both fluorescence-activated cell sorter (FACS) analysis and quantitative real-time reverse transcription-polymerase chain reaction (QRT-PCR) were used to quantify expression of the IL-3Ralpha and beta(c) subunits on AML cells. QRT-PCR for both subunits was most predictive of killing of AML colony-forming cells (AML-CFCs) by diphtheria toxin-IL-3 fusion protein (DT(388)IL3). Among 19 patient samples,the relative level of the IL-3Ralpha was higher than the IL-3Rbeta(c) and highest in CD34(+)CD38(-)CD71(-) cells,enriched for candidate leukemia stem cells,compared with cell fractions depleted of such progenitors. Overall,the amount of IL-3Rbeta(c) subunit did not vary among sorted subpopulations. However,expression of both subunits varied by more than 10-fold among different AML samples for all subpopulations studied. The level of IL-3Rbeta(c) expression versus glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (set at 1000) ranged from 0.14 to 13.56 in CD34(+)CD38(-)CD71(-) cells from different samples; this value was correlated (r = .76,P = .05) with the ability of DT(388)IL3 to kill AML progenitors that engraft in beta(2)-microglobin-deficient nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice (n = 7). Thus,quantification of IL-3R subunit expression on AML blasts predicts the effectiveness IL-3R-targeted therapy in killing primitive leukemic progenitors.
View Publication
S. Jalloh et al. (Sep 2025)
PLOS Biology 23 9
Expression of intron-containing HIV-1 RNA induces NLRP1 inflammasome activation in myeloid cells
Despite the success of antiretroviral therapy in suppressing plasma viremia in people living with human immunodeficiency virus type-1 (HIV-1),persistent viral RNA expression in tissue reservoirs is observed and can contribute to HIV-1-induced immunopathology and comorbidities. Infection of long-lived innate immune cells,such as tissue-resident macrophages and microglia may contribute to persistent viral RNA production and chronic inflammation. We recently reported that de novo cytoplasmic expression of HIV-1 intron-containing RNA (icRNA) in macrophages and microglia leads to MDA5 and MAVS-dependent innate immune sensing and induction of type I IFN responses,demonstrating that HIV icRNA is a pathogen-associated molecular pattern (PAMP). In this report,we show that cytoplasmic expression of HIV-1 icRNA also induces NLRP1 inflammasome activation and IL-1β secretion in macrophages and microglia in an RLR- and endosomal TLR-independent manner. Infection of both macrophages and microglia with either replication-competent or single-cycle HIV-1 induced IL-1β secretion,which was attenuated when cytoplasmic expression of viral icRNA was prevented. While IL-1β secretion was blocked by treatment with caspase-1 inhibitors or knockdown of NLRP1 or caspase-1 expression in HIV-infected macrophages,overexpression of NLRP1 significantly enhanced IL-1β secretion in an HIV-icRNA-dependent manner. Immunoprecipitation analysis revealed interaction of HIV-1 icRNA,but not multiply-spliced HIV-1 RNA,with NLRP1,suggesting that HIV-1 icRNA sensing by NLRP1 is sufficient to trigger inflammasome activation. Together,these findings reveal a pathway of NLRP1 inflammasome activation induced by de novo expressed HIV icRNA in HIV-infected myeloid cells.
View Publication
Wernig G et al. (JUN 2006)
Blood 107 11 4274--81
Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model.
An acquired somatic mutation,Jak2V617F,was recently discovered in most patients with polycythemia vera (PV),chronic idiopathic myelofibrosis (CIMF),and essential thrombocythemia (ET). To investigate the role of this mutation in vivo,we transplanted bone marrow (BM) transduced with a retrovirus expressing either Jak2 wild-type (wt) or Jak2V617F into lethally irradiated syngeneic recipient mice. Expression of Jak2V617F,but not Jak2wt,resulted in clinicopathologic features that closely resembled PV in humans. These included striking elevation in hemoglobin level/hematocrit,leukocytosis,megakaryocyte hyperplasia,extramedullary hematopoiesis resulting in splenomegaly,and reticulin fibrosis in the bone marrow. Histopathologic and flow cytometric analyses showed an increase in maturing myeloid lineage progenitors,although megakaryocytes showed decreased polyploidization and staining for acetylcholinesterase. In vitro analysis of primary cells showed constitutive activation of Stat5 and cytokine-independent growth of erythroid colony-forming unit (CFU-E) and erythropoietin hypersensitivity,and Southern blot analysis for retroviral integration indicated that the disease was oligoclonal. Furthermore,we observed strain-specific differences in phenotype,with Balb/c mice demonstrating markedly elevated leukocyte counts,splenomegaly,and reticulin fibrosis compared with C57Bl/6 mice. We conclude that Jak2V617F expression in bone marrow progenitors results in a PV-like syndrome with myelofibrosis and that there are strain-specific modifiers that may in part explain phenotypic pleiotropy of Jak2V617F-associated myeloproliferative disease in humans.
View Publication
Summers-DeLuca LE et al. (MAY 2007)
The Journal of experimental medicine 204 5 1071--81
Expression of lymphotoxin-alphabeta on antigen-specific T cells is required for DC function.
During an immune response,activated antigen (Ag)-specific T cells condition dendritic cells (DCs) to enhance DC function and survival within the inflamed draining lymph node (LN). It has been difficult to ascertain the role of the tumor necrosis factor (TNF) superfamily member lymphotoxin-alphabeta (LTalphabeta) in this process because signaling through the LTbeta-receptor (LTbetaR) controls multiple aspects of lymphoid tissue organization. To resolve this,we have used an in vivo system where the expression of TNF family ligands is manipulated only on the Ag-specific T cells that interact with and condition Ag-bearing DCs. We report that LTalphabeta is a critical participant required for optimal DC function,independent of its described role in maintaining lymphoid tissue organization. In the absence of LTalphabeta or CD40L on Ag-specific T cells,DC dysfunction could be rescued in vivo via CD40 or LTbetaR stimulation,respectively,suggesting that these two pathways cooperate for optimal DC conditioning.
View Publication
Garcí et al. (NOV 2010)
American journal of respiratory and critical care medicine 182 9 1144--52
Expression of matrix metalloproteases by fibrocytes: possible role in migration and homing.
RATIONALE: Fibrocytes are progenitor cells characterized by the simultaneous expression of mesenchymal,monocyte,and hematopoietic stem cell markers. We previously documented their presence in lungs of patients with idiopathic pulmonary fibrosis. However,the mechanisms involved in their migration,subsequent homing,and local role remain unclear. Matrix metalloproteinases (MMPs) facilitate cell migration and have been implicated in the pathogenesis of pulmonary fibrosis. OBJECTIVES: To evaluate the expression and role of matrix metalloproteinases in human fibrocytes. METHODS: Fibrocytes were purified from CD14(+) monocytes and cultured for 8 days; purity of fibrocyte cultures was 95% or greater as determined by flow cytometry. Conditioned media and total RNA were collected and the expression of MMP-1,MMP-2,MMP-7,MMP-8,and MMP-9 was evaluated by real-time polymerase chain reaction. Protein synthesis was examined using a Multiplex assay,Western blot,fluorescent immunocytochemistry,and confocal microscopy. MMP-2 and MMP-9 enzymatic activities were evaluated by gelatin zymography. Migration was assessed using collagen I-coated Boyden chambers. Stromal cell-derived factor-1α and platelet-derived growth factor-B were used as chemoattractant with or without a specific MMP-8 inhibitor. MEASUREMENTS AND MAIN RESULTS: Fibrocytes showed gene and protein expression of MMP-2,MMP-9,MMP-8,and MMP-7. MMP-2 and MMP-9 enzymatic activities were also demonstrated by gelatin zymography. Likewise,we found colocalization of MMP-8 and MMP-7 with type I collagen in fibrocytes. Fibrocyte migration toward platelet-derived growth factor-B or Stromal cell-derived factor-1α in collagen I-coated Boyden chambers was significantly reduced by a specific MMP-8 inhibitor. CONCLUSIONS: Our findings reveal that fibrocytes express a variety of MMPs and that MMP-8 actively participates in the process of fibrocyte migration.
View Publication