A Platelet Reactivity ExpreSsion Score derived from patients with peripheral artery disease predicts cardiovascular risk
Platelets are key mediators of atherothrombosis,yet,limited tools exist to identify individuals with a hyperreactive platelet phenotype. In this study,we investigate the association of platelet hyperreactivity and cardiovascular events,and introduce a tool,the Platelet Reactivity ExpreSsion Score (PRESS),which integrates platelet aggregation responses and RNA sequencing. Among patients with peripheral artery disease (PAD),those with a hyperreactive platelet response (>60% aggregation) to 0.4 µM epinephrine had a higher incidence of the 30 day primary cardiovascular endpoint (37.2% vs. 15.3% in those without hyperreactivity,adjusted HR 2.76,95% CI 1.5–5.1,p = 0.002). PRESS performs well in identifying a hyperreactive phenotype in patients with PAD (AUC [cross-validation] 0.81,95% CI 0.68 –0.94,n = 84) and in an independent cohort of healthy participants (AUC [validation] 0.77,95% CI 0.75 –0.79,n = 35). Following multivariable adjustment,PAD individuals with a PRESS score above the median are at higher risk for a future cardiovascular event (adjusted HR 1.90,CI 1.07–3.36; p = 0.027,n = 129,NCT02106429). This study derives and validates the ability of PRESS to discriminate platelet hyperreactivity and identify those at increased cardiovascular risk. Future studies in a larger independent cohort are warranted for further validation. The development of a platelet reactivity expression score opens the possibility for a personalized approach to antithrombotic therapy for cardiovascular risk reduction. Platelet hyperreactivity is associated with cardiovascular events in patients with PAD. Here the authors derive and validate a circulating platelet genetic signature to discriminate platelet hyperreactivity and cardiovascular risk.
View Publication
Pei Y et al. (MAR 2015)
Scientific reports 5 9205
A platform for rapid generation of single and multiplexed reporters in human iPSC lines.
Induced pluripotent stem cells (iPSC) are important tools for drug discovery assays and toxicology screens. In this manuscript,we design high efficiency TALEN and ZFN to target two safe harbor sites on chromosome 13 and 19 in a widely available and well-characterized integration-free iPSC line. We show that these sites can be targeted in multiple iPSC lines to generate reporter systems while retaining pluripotent characteristics. We extend this concept to making lineage reporters using a C-terminal targeting strategy to endogenous genes that express in a lineage-specific fashion. Furthermore,we demonstrate that we can develop a master cell line strategy and then use a Cre-recombinase induced cassette exchange strategy to rapidly exchange reporter cassettes to develop new reporter lines in the same isogenic background at high efficiency. Equally important we show that this recombination strategy allows targeting at progenitor cell stages,further increasing the utility of the platform system. The results in concert provide a novel platform for rapidly developing custom single or dual reporter systems for screening assays.
View Publication
Duportet X et al. (DEC 2014)
Nucleic Acids Research 42 21 13440--13451
A platform for rapid prototyping of synthetic gene networks in mammalian cells
Mammalian synthetic biology may provide novel therapeutic strategies,help decipher new paths for drug discovery and facilitate synthesis of valuable molecules. Yet,our capacity to genetically program cells is currently hampered by the lack of efficient approaches to streamline the design,construction and screening of synthetic gene networks. To address this problem,here we present a framework for modular and combinatorial assembly of functional (multi)gene expression vectors and their efficient and specific targeted integration into a well-defined chromosomal context in mammalian cells. We demonstrate the potential of this framework by assembling and integrating different functional mammalian regulatory networks including the largest gene circuit built and chromosomally integrated to date (6 transcription units,27kb) encoding an inducible memory device. Using a library of 18 different circuits as a proof of concept,we also demonstrate that our method enables one-pot/single-flask chromosomal integration and screening of circuit libraries. This rapid and powerful prototyping platform is well suited for comparative studies of genetic regulatory elements,genes and multi-gene circuits as well as facile development of libraries of isogenic engineered cell lines.
View Publication
(Jul 2025)
Scientific Data 12
A pluripotent stem cell atlas of multilineage differentiation
Human pluripotent stem cells offer a scalable platform to study genetic and signalling mechanisms governing cell lineage decisions during differentiation. Genome-wide and single-cell transcriptomics technologies likewise offer high-throughput analysis of heterogeneous cell differentiation states. While in vivo development has been extensively characterised using these technologies,there remains a need for comprehensive single-cell transcriptomic profiling of stem cell differentiation from pluripotency. Understanding gene expression changes governing differentiation in vitro is key to developing high fidelity differentiation protocols and understanding fundamental mechanisms of development. We generated a single-cell RNA sequencing time course to study the role of developmental signalling pathways on multilineage diversification from pluripotency in vitro. The combined dataset of over 60,000 cells spans cell types from a time course of differentiation across all germ layers,ranging from gastrulation cell states to progenitor and committed cell types. These data provide a diverse benchmarking reference point to compare against in vivo development and advance understanding of signalling regulation of differentiation,providing insights into protocol development,drug screening,and regenerative medicine applications.
View Publication
W. Yang et al. (Aug 2025)
Cancers 17 17
A Polyomavirus-Positive Merkel Cell Carcinoma Mouse Model Supports a Unified Origin for Somatic and Germ Cell Cancers
Cancer research has long focused on mutations in normal body cells,but this approach has not produced major breakthroughs for most cancers. Our study explores a different concept that some aggressive cancers may actually arise from early reproductive cells called primordial germ cells,which normally develop into eggs and sperm. We created a new experimental model showing how a virus can transform human primordial germ cell-like cells into virus-positive Merkel cell carcinoma,a rare but deadly skin cancer. This model shows that cancers can emerge through changes in developmental states rather than relying solely on genetic mutations. By linking cancer development to early germ cells,our findings suggest a unifying explanation for both germ cell cancers and body cancers. This new perspective may guide more effective approaches to study,diagnose,and treat cancer by focusing on early human development rather than only DNA mutations and later developmental stages.
View Publication
C. Alcaino et al. (JUL 2018)
Proceedings of the National Academy of Sciences of the United States of America
A population of gut epithelial enterochromaffin cells is mechanosensitive and requires Piezo2 to convert force into serotonin release.
Enterochromaffin (EC) cells constitute the largest population of intestinal epithelial enteroendocrine (EE) cells. EC cells are proposed to be specialized mechanosensory cells that release serotonin in response to epithelial forces,and thereby regulate intestinal fluid secretion. However,it is unknown whether EE and EC cells are directly mechanosensitive,and if so,what the molecular mechanism of their mechanosensitivity is. Consequently,the role of EE and EC cells in gastrointestinal mechanobiology is unclear. Piezo2 mechanosensitive ion channels are important for some specialized epithelial mechanosensors,and they are expressed in mouse and human EC cells. Here,we use EC and EE cell lineage tracing in multiple mouse models to show that Piezo2 is expressed in a subset of murine EE and EC cells,and it is distributed near serotonin vesicles by superresolution microscopy. Mechanical stimulation of a subset of isolated EE cells leads to a rapid inward ionic current,which is diminished by Piezo2 knockdown and channel inhibitors. In these mechanosensitive EE cells force leads to Piezo2-dependent intracellular Ca2+ increase in isolated cells as well as in EE cells within intestinal organoids,and Piezo2-dependent mechanosensitive serotonin release in EC cells. Conditional knockout of intestinal epithelial Piezo2 results in a significant decrease in mechanically stimulated epithelial secretion. This study shows that a subset of primary EE and EC cells is mechanosensitive,uncovers Piezo2 as their primary mechanotransducer,defines the molecular mechanism of their mechanotransduction and mechanosensitive serotonin release,and establishes the role of epithelial Piezo2 mechanosensitive ion channels in regulation of intestinal physiology.
View Publication
Li P et al. (DEC 2013)
Nature Neuroscience 16 12 1737--1744
A population of Nestin-expressing progenitors in the cerebellum exhibits increased tumorigenicity
It is generally believed that cerebellar granule neurons originate exclusively from granule neuron precursors (GNPs) in the external germinal layer (EGL). Here we identified a rare population of neuronal progenitors in mouse developing cerebellum that expresses Nestin. Although Nestin is widely considered a marker for multipotent stem cells,these Nestin-expressing progenitors (NEPs) are committed to the granule neuron lineage. Unlike conventional GNPs,which reside in the outer EGL and proliferate extensively,NEPs reside in the deep part of the EGL and are quiescent. Expression profiling revealed that NEPs are distinct from GNPs and,in particular,express markedly reduced levels of genes associated with DNA repair. Consistent with this,upon aberrant activation of Sonic hedgehog (Shh) signaling,NEPs exhibited more severe genomic instability and gave rise to tumors more efficiently than GNPs. These studies revealed a previously unidentified progenitor for cerebellar granule neurons and a cell of origin for medulloblastoma.
View Publication
Sugimine Y et al. (SEP 2016)
International journal of hematology
A portable platform for stepwise hematopoiesis from human pluripotent stem cells within PET-reinforced collagen sponges.
Various systems for differentiating hematopoietic cells from human pluripotent stem cells (PSCs) have been developed,although none have been fully optimized. In this report,we describe the development of a novel three-dimensional system for differentiating hematopoietic cells from PSCs using collagen sponges (CSs) reinforced with poly(ethylene terephthalate) fibers as a scaffold. PSCs seeded onto CSs were differentiated in a stepwise manner with appropriate cytokines under serum-free and feeder-free conditions. This process yielded several lineages of floating hematopoietic cells repeatedly for more than 1 month. On immunohistochemical staining,we detected CD34+ cells and CD45+ cells in the surface and cavities of the CS. Taking advantage of the portability of this system,we were able to culture multiple CSs together floating in medium,making it possible to harvest large numbers of hematopoietic cells repeatedly. Given these findings,we suggest that this novel three-dimensional culture system may be useful in the large-scale culture of PSC-derived hematopoietic cells.
View Publication
H. Piao et al. (may 2022)
Journal of experimental & clinical cancer research : CR 41 1 174
A positive feedback loop between gastric cancer cells and tumor-associated macrophage induces malignancy progression.
BACKGROUND Hypoxia and inflammation tumor microenvironment (TME) play a crucial role in tumor development and progression. Although increased understanding of TME contributed to gastric cancer (GC) progression and prognosis,the direct interaction between macrophage and GC cells was not fully understood. METHODS Hypoxia and normoxia macrophage microarrays of GEO database was analyzed. The peripheral blood mononuclear cell acquired from the healthy volunteers. The expression of C-X-C Motif Chemokine Ligand 8 (CXCL8) in GC tissues and cell lines was detected by quantitative reverse transcription PCR (qRT-PCR),western-blot,Elisa and immunofluorescence. Cell proliferation,migration,and invasion were evaluated by cell counting kit 8 (CCK8),colony formation,real-time imaging of cell migration and transwell. Flow Cytometers was applied to identify the source of cytokines. Luciferase reporter assays and chromatin immunoprecipitation were used to identify the interaction between transcription factor and target gene. Especially,a series of truncated and mutation reporter genes were applied to identify precise binding sites. The corresponding functions were verified in the complementation test and in vivo animal experiment. RESULTS Our results revealed that hypoxia triggered macrophage secreted CXCL8,which induced GC invasion and proliferation. This macrophage-induced GC progression was CXCL8 activated C-X-C Motif Chemokine Receptor 1/2 (CXCR1/2) on the GC cell membrane subsequently hyperactivated Janus kinase 1/ Signal transducer and activator of transcription 1 (JAK/STAT1) signaling pathway. Then,the transcription factor STAT1 directly led to the overexpression and secretion of Interleukin 10 (IL-10). Correspondingly,IL-10 induced the M2-type polarization of macrophages and continued to increase the expression and secretion of CXCL8. It suggested a positive feedback loop between macrophage and GC. In clinical GC samples,increased CXCL8 predicted a patient's pessimistic outcome. CONCLUSION Our work identified a positive feedback loop governing cancer cells and macrophage in GC that contributed to tumor progression and patient outcome.
View Publication
Cho J-H et al. (FEB 2013)
The Journal of biological chemistry 288 5 3406--3418
A positive feedback loop regulates the expression of polycomb group protein BMI1 via WNT signaling pathway.
Polycomb group protein BMI1 plays an important role in cellular homeostasis by maintaining a balance between proliferation and senescence. It is often overexpressed in cancer cells and is required for self-renewal of stem cells. At present,very little is known about the signaling pathways that regulate the expression of BMI1. Here,we report that BMI1 autoactivates its own promoter via an E-box present in its promoter. We show that BMI1 acts as an activator of the WNT pathway by repressing Dickkopf (DKK) family of WNT inhibitors. BMI1 mediated repression of DKK proteins; in particular,DKK1 led to up-regulation of WNT target c-Myc,which in turn further led to transcriptional autoactivation of BMI1. Thus,a positive feedback loop connected by the WNT signaling pathway regulates BMI1 expression. This positive feedback loop regulating BMI1 expression may be relevant to the role of BMI1 in promoting cancer and maintaining stem cell phenotype.
View Publication
Han YK et al. (JAN 2013)
Biochemical and biophysical research communications 430 4 1329--1333
A possible usage of a CDK4 inhibitor for breast cancer stem cell-targeted therapy.
Cancer stem cells (CSCs) are one of the main reasons behind cancer recurrence due to their resistance to conventional anti-cancer therapies. Thus,many efforts are being devoted to developing CSC-targeted therapies to overcome the resistance of CSCs to conventional anti-cancer therapies and decrease cancer recurrence. Differentiation therapy is one potential approach to achieve CSC-targeted therapies. This method involves inducing immature cancer cells with stem cell characteristics into more mature or differentiated cancer cells. In this study,we found that a CDK4 inhibitor sensitized MDA-MB-231 cells but not MCF7 cells to irradiation. This difference appeared to be associated with the relative percentage of CSC-population between the two breast cancer cells. The CDK4 inhibitor induced differentiation and reduced the cancer stem cell activity of MDA-MB-231 cells,which are shown by multiple marker or phenotypes of CSCs. Thus,these results suggest that radiosensitization effects may be caused by reducing the CSC-population of MDA-MB-231 through the use of the CDK4 inhibitor. Thus,further investigations into the possible application of the CDK4 inhibitor for CSC-targeted therapy should be performed to enhance the efficacy of radiotherapy for breast cancer.
View Publication
Dai W et al. (JUL 2015)
Nature communications 6 7576
A post-transcriptional mechanism pacing expression of neural genes with precursor cell differentiation status.
Nervous system (NS) development relies on coherent upregulation of extensive sets of genes in a precise spatiotemporal manner. How such transcriptome-wide effects are orchestrated at the molecular level remains an open question. Here we show that 3'-untranslated regions (3' UTRs) of multiple neural transcripts contain AU-rich cis-elements (AREs) recognized by tristetraprolin (TTP/Zfp36),an RNA-binding protein previously implicated in regulation of mRNA stability. We further demonstrate that the efficiency of ARE-dependent mRNA degradation declines in the neural lineage because of a decrease in the TTP protein expression mediated by the NS-enriched microRNA miR-9. Importantly,TTP downregulation in this context is essential for proper neuronal differentiation. On the other hand,inactivation of TTP in non-neuronal cells leads to dramatic upregulation of multiple NS-specific genes. We conclude that the newly identified miR-9/TTP circuitry limits unscheduled accumulation of neuronal mRNAs in non-neuronal cells and ensures coordinated upregulation of these transcripts in neurons.
View Publication