Perin EC et al. (JUN 2011)
American heart journal 161 6 1078--87.e3
A randomized study of transendocardial injection of autologous bone marrow mononuclear cells and cell function analysis in ischemic heart failure (FOCUS-HF).
BACKGROUND Autologous bone marrow mononuclear cell (ABMMNC) therapy has shown promise in patients with heart failure (HF). Cell function analysis may be important in interpreting trial results. METHODS In this prospective study,we evaluated the safety and efficacy of the transendocardial delivery of ABMMNCs in no-option patients with chronic HF. Efficacy was assessed by maximal myocardial oxygen consumption,single photon emission computed tomography,2-dimensional echocardiography,and quality-of-life assessment (Minnesota Living with Heart Failure and Short Form 36). We also characterized patients' bone marrow cells by flow cytometry,colony-forming unit,and proliferative assays. RESULTS Cell-treated (n = 20) and control patients (n = 10) were similar at baseline. The procedure was safe; adverse events were similar in both groups. Canadian Cardiovascular Society angina score improved significantly (P = .001) in cell-treated patients,but function was not affected. Quality-of-life scores improved significantly at 6 months (P = .009 Minnesota Living with Heart Failure and P = .002 physical component of Short Form 36) over baseline in cell-treated but not control patients. Single photon emission computed tomography data suggested a trend toward improved perfusion in cell-treated patients. The proportion of fixed defects significantly increased in control (P = .02) but not in treated patients (P = .16). Function of patients' bone marrow mononuclear cells was severely impaired. Stratifying cell results by age showed that younger patients (%60 years) had significantly more mesenchymal progenitor cells (colony-forming unit fibroblasts) than patients<60 years (20.16 ± 14.6 vs 10.92 ± 7.8,P = .04). Furthermore,cell-treated younger patients had significantly improved maximal myocardial oxygen consumption (15 ± 5.8,18.6 ± 2.7,and 17 ± 3.7 mL/kg per minute at baseline,3 months,and 6 months,respectively) compared with similarly aged control patients (14.3 ± 2.5,13.7 ± 3.7,and 14.6 ± 4.7 mL/kg per minute,P = .04). CONCLUSIONS ABMMNC therapy is safe and improves symptoms,quality of life,and possibly perfusion in patients with chronic HF.
View Publication
Bell S et al. (MAR 2017)
Stem cells translational medicine 6 3 886--896
A Rapid Pipeline to Model Rare Neurodevelopmental Disorders with Simultaneous CRISPR/Cas9 Gene Editing.
The development of targeted therapeutics for rare neurodevelopmental disorders (NDDs) faces significant challenges due to the scarcity of subjects and the difficulty of obtaining human neural cells. Here,we illustrate a rapid,simple protocol by which patient derived cells can be reprogrammed to induced pluripotent stem cells (iPSCs) using an episomal vector and differentiated into neurons. Using this platform enables patient somatic cells to be converted to physiologically active neurons in less than two months with minimal labor. This platform includes a method to combine somatic cell reprogramming with CRISPR/Cas9 gene editing at single cell resolution,which enables the concurrent development of clonal knockout or knock-in models that can be used as isogenic control lines. This platform reduces the logistical barrier for using iPSC technology,allows for the development of appropriate control lines for use in rare neurodevelopmental disease research,and establishes a fundamental component to targeted therapeutics and precision medicine. Stem Cells Translational Medicine 2017;6:886-896.
View Publication
Gibbs BF et al. (MAR 2008)
Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology 38 3 480--5
A rapid two-step procedure for the purification of human peripheral blood basophils to near homogeneity.
BACKGROUND: Basophils are increasingly utilized as indicators of allergic inflammation and as primary allergic effector cells to study signalling pathways. However,until the present,their enrichment has been time consuming,costly and limited to relatively few specialized laboratories. OBJECTIVE: We have therefore devised a reproducible and rapid method for the purification of human basophils from small quantities of peripheral blood within 1.5 h,which does not require the use of specialized equipment such as elutriators. METHODS: Human basophils were obtained from healthy volunteers undergoing venipuncture. Heparinized or K3-ethylenediaminetetraacetic acid blood samples were first subjected to centrifugation in Hetasep,directly followed by negative selection using immunomagnetic beads. Basophil morphology and purity were assessed by May-Grünwald staining of cytospins. IgE-mediated histamine release was analysed spectrofluorometrically and IL-4 and IL-13 production by quantitative RT-PCR. CD203c and CD63 surface expression was measured using flow cytometry before and after activation with anti-IgE. RESULTS: Using this protocol,basophils were enriched close to homogeneity in most cases with a mean purity of 99.34+/-0.88% (range 97-100%,n=18) and a mean recovery of 75.6 (range 39-100%,n=8). Basophil viability following purification was 99.6+/-0.89% using Trypan blue exclusion. The purification procedure gave rise to basophils with normal functional responses to anti-IgE regarding histamine release as well as IL-4 and IL-13 mRNA expression. Moreover,constitutive cell-surface CD203c/CD63 expressions were not elevated before anti-IgE stimulation. CONCLUSION: The rapidity,simplicity and reproducibility of this method will facilitate the employment of basophils in high-output ex vivo studies.
View Publication
Prowse A et al. (JUL 2009)
BioTechniques 47 1 599--606
A rapid, cost-effective method for counting human embryonic stem cell numbers as clumps.
Enumeration of human embryonic stem cell (hESC) numbers through single cell digestion can be time consuming especially in high-throughput or multi-factorial analysis containing 50+ samples. We have developed a reproducible,cost-effective method of counting hESCs in clumps circumventing the need to manually dissociate each sample to single cells. The method is based on the DNA binding capacity of propidium iodide (PI) and subsequent fluorescent signal detection. Standard curves generated for cell numbers versus PI fluorescence as single cells or clumps showed an almost identical relationship in the lines of best fit. The reproducibility of the assay was first demonstrated by seeding hESC clumps at specific cell densities ranging 0.05[x02013]2x105 cells/well and then secondly by using the assay to count cell numbers after different growth conditions. Validation tests showed that consistent seeding densities are important in maintaining undifferentiated hESC culture and that the assay can be used to estimate relative cell numbers and growth curves with high accuracy.
View Publication
M. K. Wetzel-Smith et al. (DEC 2014)
Nature medicine 20 12 1452--7
A rare mutation in UNC5C predisposes to late-onset Alzheimer's disease and increases neuronal cell death.
We have identified a rare coding mutation,T835M (rs137875858),in the UNC5C netrin receptor gene that segregated with disease in an autosomal dominant pattern in two families enriched for late-onset Alzheimer's disease and that was associated with disease across four large case-control cohorts (odds ratio = 2.15,Pmeta = 0.0095). T835M alters a conserved residue in the hinge region of UNC5C,and in vitro studies demonstrate that this mutation leads to increased cell death in human HEK293T cells and in rodent neurons. Furthermore,neurons expressing T835M UNC5C are more susceptible to cell death from multiple neurotoxic stimuli,including $\beta$-amyloid (A$\beta$),glutamate and staurosporine. On the basis of these data and the enriched hippocampal expression of UNC5C in the adult nervous system,we propose that one possible mechanism in which T835M UNC5C contributes to the risk of Alzheimer's disease is by increasing susceptibility to neuronal cell death,particularly in vulnerable regions of the Alzheimer's disease brain.
View Publication
Liu J et al. (NOV 2014)
FASEB journal : official publication of the Federation of American Societies for Experimental Biology 28 11 4642--4656
A reciprocal antagonism between miR-376c and TGF-$\$ regulates neural differentiation of human pluripotent stem cells.
Differentiation of neural lineages from human pluripotent stem cells (hPSCs) raises the hope of generating functional cells for the treatment of neural diseases. However,current protocols for differentiating hPSCs into neural lineages remain inefficient and largely variable between different hPSC lines. We report that microRNA 376c (miR-376c) significantly enhanced neural differentiation of hPSCs in a defined condition by suppressing SMAD4,the co-SMAD for TGF-β signaling. Downstream,SMAD4 directly bound and suppressed PAX6,the critical neural lineage specification factor. Interestingly,we also found that SMAD4 binds and suppresses miR-376c clusters in undifferentiated hESCs. In summary,our findings revealed a reciprocal antagonism between miR-376c and SMAD signaling that regulates cell fate during human neural differentiation.-Liu,J.,Wang,L.,Su,Z.,Wu,W.,Cai,X.,Li,D.,Hou,J.,Pei,D.,Pan,G. A reciprocal antagonism between miR-376c and TGF-β signaling regulates neural differentiation of hPSCs.
View Publication
(Jan 2025)
Cells 14 3
A Recombinase-Mediated Cassette Exchange Platform for a Triple Independent Inducible Expression System for Human Pluripotent Stem Cells
Human pluripotent stem cells (hPSCs) and their differentiated derivatives represent valuable tools for studying development,modeling diseases,and advancing cell therapy. Recent improvements in genome engineering allow for precise modifications of hPSCs,further enhancing their utility in basic and translational research. Here we describe a Recombinase-Mediated Cassette Exchange (RMCE) platform in hPSCs that allows for the highly efficient,rapid,and specific integration of transgenes. The RCME-mediated DNA integration process is nearly 100% efficient,without negatively affecting the pluripotency or karyotypic stability of hPSCs. Taking advantage of this convenient system,we first established a dual inducible expression system based on the Tet-On and Cumate-On systems,allowing for the inducible expression of two transgenes independently. Secondly,we incorporated a Tet-on inducible system,driving the expression of three genes simultaneously. However,two genes also contain independent degron sequences,allowing for precise control over the expression of each gene individually. We demonstrated the utility of these systems in hPSCs,as well as their functionality after differentiation into cells that were representative of the three germ layers. Lastly,we used the triple inducible system to investigate the lineage commitment induced by the pancreatic transcription factors NKX6.1 and PDX1. We found that controlled dual expression,but not individual expression,biases hPSC embryoid body differentiation towards the pancreatic lineage by inducing the expression of the NeuroD program. In sum,we describe a novel genetic engineering platform that allows for the efficient and fast integration of any desired transgene(s) in hPSCs using RMCE. We anticipate that the ability to modulate the expression of three transgenes simultaneously will further accelerate discoveries using stem cell technology.
View Publication
Schwarz A et al. (MAY 1995)
The Journal of biological chemistry 270 18 10990--8
A regulatory role for sphingolipids in neuronal growth. Inhibition of sphingolipid synthesis and degradation have opposite effects on axonal branching.
Sphingolipids,particularly gangliosides,are enriched in neuronal membranes where they have been implicated as mediators of various regulatory events. We recently provided evidence that sphingolipid synthesis is necessary to maintain neuronal growth by demonstrating that in hippocampal neurons,inhibition of ceramide synthesis by Fumonisin B1 (FB1) disrupted axonal outgrowth (Harel,R. and Futerman,A. H. (1993) J. Biol. Chem. 268,14476-14481). We now analyze further the relationship between neuronal growth and sphingolipid metabolism by examining the effect of an inhibitor of glucosylceramide synthesis,D-threo-1-phenyl-2-decanoylamino-3-morpholino-1- propanol (PDMP) and by examining the effects of both FB1 and PDMP at various stages of neuronal development. No effects of FB1 or PDMP were observed during the first 2 days in culture,but by day 3 axonal morphology was significantly altered,irrespective of the time of addition of the inhibitors to the cultures. Cells incubated with FB1 or PDMP had a shorter axon plexus and less axonal branches. FB1 appeared to cause a retraction of axonal branches between days 2 and 3,although long term incubation had no apparent effect on neuronal morphology or on the segregation of axonal or dendritic proteins. In contrast,incubation of neurons with conduritol B-epoxide,an inhibitor of glucosylceramide degradation,caused an increase in the number of axonal branches and a corresponding increase in the length of the axon plexus. A direct correlation was observed between the number of axonal branch points per cell and the extent of inhibition of either sphingolipid synthesis or degradation. These results suggest that sphingolipids play an important role in the formation or stabilization of axonal branches.
View Publication
Diekmann U et al. (JAN 2015)
Stem cells and development 24 2 190--204
A reliable and efficient protocol for human pluripotent stem cell differentiation into the definitive endoderm based on dispersed single cells.
Differentiation of pluripotent cells into endoderm-related cell types initially requires in vitro gastrulation into the definitive endoderm (DE). Most differentiation protocols are initiated from colonies of pluripotent cells complicating their adaption due to insufficiently defined starting conditions. The protocol described here was initiated from a defined cell number of dispersed single cells and tested on three different human embryonic stem cell lines and one human induced pluripotent stem cell line. Combined activation of ActivinA/Nodal signaling and GSK3 inhibition for the first 24 h,followed by ActivinA/Nodal signaling efficiently induced the DE state. Activation of ActivinA/Nodal signaling alone was not effective. Efficient GSK3 inhibition allowed the reduction of the ActivinA concentration during the entire protocol. A feeder-independent cultivation of pluripotent cells was preferred to achieve the high efficiency and robustness since feeder cells hindered the differentiation process. Additionally,inhibition of the phosphatidylinositol 3-kinase (PI3K) signaling pathway was not required,nonetheless yielding high cell numbers efficiently committed toward the DE. Finally,the endoderm generated could be differentiated further into PDX1-positive pan-pancreatic cells and NGN3-positive endocrine progenitors. Thus,this efficient and robust DE differentiation protocol is a step forward toward better reproducibility due to the well-defined conditions based on dispersed single cells from feeder-free-cultivated human pluripotent cells.
View Publication
S. Su et al. (dec 2018)
Cell reports 25 11 3215--3228.e9
A Renewable Source of Human Beige Adipocytes for Development of Therapies to Treat Metabolic Syndrome.
Molecular- and cellular-based therapies have the potential to reduce obesity-associated disease. In response to cold,beige adipocytes form in subcutaneous white adipose tissue and convert energy stored in metabolic substrates to heat,making them an attractive therapeutic target. We developed a robust method to generate a renewable source of human beige adipocytes from induced pluripotent stem cells (iPSCs). Developmentally,these cells are derived from FOXF1+ mesoderm and progress through an expandable mural-like mesenchymal stem cell (MSC) to form mature beige adipocytes that display a thermogenically active profile. This includes expression of uncoupling protein 1 (UCP1) concomitant with increased uncoupled respiration. With this method,dysfunctional adipogenic precursors can be reprogrammed and differentiated into beige adipocytes with increased thermogenic function and anti-diabetic secretion potential. This resource can be used to (1) elucidate mechanisms that underlie the control of beige adipogenesis and (2) generate material for cellular-based therapies that target metabolic syndrome in humans.
View Publication
Elanzew A et al. (OCT 2015)
Biotechnology journal 10 10 1589--1599
A reproducible and versatile system for the dynamic expansion of human pluripotent stem cells in suspension.
Reprogramming of patient cells to human induced pluripotent stem cells (hiPSC) has facilitated in vitro disease modeling studies aiming at deciphering the molecular and cellular mechanisms that contribute to disease pathogenesis and progression. To fully exploit the potential of hiPSC for biomedical applications,technologies that enable the standardized generation and expansion of hiPSC from large numbers of donors are required. Paralleled automated processes for the expansion of hiPSC could provide an opportunity to maximize the generation of hiPSC collections from patient cohorts while minimizing hands-on time and costs. In order to develop a simple method for the parallel expansion of human pluripotent stem cells (hPSC) we established a protocol for their cultivation as undifferentiated aggregates in a bench-top bioreactor system (BioLevitator™). We show that long-term expansion (10 passages) of hPSCs either in mTeSR or E8 medium preserved a normal karyotype,three-germ-layer differentiation potential and high expression of pluripotency-associated markers. The system enables the expansion from low inoculation densities (0.3 × 10(5) cells/mL) and provides a simplified,cost-efficient and time-saving method for the provision of hiPSC at midi-scale. Implementation of this protocol in cell production schemes has the potential to advance cell manufacturing in many areas of hiPSC-based medical research.
View Publication
Stadtfeld M et al. (JAN 2010)
Nature methods 7 1 53--5
A reprogrammable mouse strain from gene-targeted embryonic stem cells.
The derivation of induced pluripotent stem cells (iPSCs) usually involves the viral introduction of reprogramming factors into somatic cells. Here we used gene targeting to generate a mouse strain with a single copy of an inducible,polycistronic reprogramming cassette,allowing for the induction of pluripotency in various somatic cell types. As these 'reprogrammable mice' can be easily bred,they are a useful tool to study the mechanisms underlying cellular reprogramming.
View Publication