P. Bank'o et al. (may 2019)
Journal of hematology oncology 12 1 48
Technologies for circulating tumor cell separation from whole blood.
The importance of early cancer diagnosis and improved cancer therapy has been clear for years and has initiated worldwide research towards new possibilities in the care strategy of patients with cancer using technological innovations. One of the key research fields involves the separation and detection of circulating tumor cells (CTC) because of their suggested important role in early cancer diagnosis and prognosis,namely,providing easy access by a liquid biopsy from blood to identify metastatic cells before clinically detectable metastasis occurs and to study the molecular and genetic profile of these metastatic cells. Provided the opportunity to further progress the development of technology for treating cancer,several CTC technologies have been proposed in recent years by various research groups and companies. Despite their potential role in cancer healthcare,CTC methods are currently mainly used for research purposes,and only a few methods have been accepted for clinical application because of the difficulties caused by CTC heterogeneity,CTC separation from the blood,and a lack of thorough clinical validation. Therefore,the standardization and clinical application of various developed CTC technologies remain important subsequent necessary steps. Because of their suggested future clinical benefits,we focus on describing technologies using whole blood samples without any pretreatment and discuss their advantages,use,and significance. Technologies using whole blood samples utilize size-based,immunoaffinity-based,and density-based methods or combinations of these methods as well as positive and negative enrichment during separation. Although current CTC technologies have not been truly implemented yet,they possess high potential as future clinical diagnostic techniques for the individualized therapy of patients with cancer. Thus,a detailed discussion of the clinical suitability of these new advanced technologies could help prepare clinicians for the future and can be a foundation for technologies that would be used to eliminate CTCs in vivo.
View Publication
Reference
S. Bangaru et al. (may 2019)
Cell 177 5 1136--1152.e18
A Site of Vulnerability on the Influenza Virus Hemagglutinin Head Domain Trimer Interface.
Here,we describe the discovery of a naturally occurring human antibody (Ab),FluA-20,that recognizes a new site of vulnerability on the hemagglutinin (HA) head domain and reacts with most influenza A viruses. Structural characterization of FluA-20 with H1 and H3 head domains revealed a novel epitope in the HA trimer interface,suggesting previously unrecognized dynamic features of the trimeric HA protein. The critical HA residues recognized by FluA-20 remain conserved across most subtypes of influenza A viruses,which explains the Ab's extraordinary breadth. The Ab rapidly disrupted the integrity of HA protein trimers,inhibited cell-to-cell spread of virus in culture,and protected mice against challenge with viruses of H1N1,H3N2,H5N1,or H7N9 subtypes when used as prophylaxis or therapy. The FluA-20 Ab has uncovered an exceedingly conserved protective determinant in the influenza HA head domain trimer interface that is an unexpected new target for anti-influenza therapeutics and vaccines.
View Publication
Reference
J. Bae et al. (mar 2019)
Leukemia
Selective targeting of multiple myeloma by B cell maturation antigen (BCMA)-specific central memory CD8+ cytotoxic T lymphocytes: immunotherapeutic application in vaccination and adoptive immunotherapy.
To expand the breadth and extent of current multiple myeloma (MM)-specific immunotherapy,we have identified various antigens on CD138+ tumor cells from newly diagnosed MM patients (n = 616) and confirmed B-cell maturation antigen (BCMA) as a key myeloma-associated antigen. The aim of this study is to target the BCMA,which promotes MM cell growth and survival,by generating BCMA-specific memory CD8+ CTL that mediate effective and long-lasting immunity against MM. Here we report the identification of novel engineered peptides specific to BCMA,BCMA72-80 (YLMFLLRKI),and BCMA54-62 (YILWTCLGL),which display improved affinity/stability to HLA-A2 compared to their native peptides and induce highly functional BCMA-specific CTL with increased activation (CD38,CD69) and co-stimulatory (CD40L,OX40,GITR) molecule expression. Importantly,the heteroclitic BCMA72-80 specific CTL demonstrated poly-functional Th1-specific immune activities [IFN-gamma/IL-2/TNF-alpha production,proliferation,cytotoxicity] against MM,which were correlated with expansion of Tetramer+ and memory CD8+ CTL. Additionally,heteroclitic BCMA72-80 specific CTL treated with anti-OX40 (immune agonist) or anti-LAG-3 (checkpoint inhibitor) display increased immune function,mainly by central memory CTL. These results provide the framework for clinical application of heteroclitic BCMA72-80 peptide,alone and in combination with anti-LAG3 and/or anti-OX40 therapy,in vaccination and/or adoptive immunotherapeutic strategies to generate long-lasting anti-tumor immunity in patients with MM or other BCMA expressing tumors.
View Publication
Reference
A. Arazi et al. ( 2019)
Nature immunology 20 7 902--914
The immune cell landscape in kidneys of patients with lupus nephritis.
Lupus nephritis is a potentially fatal autoimmune disease for which the current treatment is ineffective and often toxic. To develop mechanistic hypotheses of disease,we analyzed kidney samples from patients with lupus nephritis and from healthy control subjects using single-cell RNA sequencing. Our analysis revealed 21 subsets of leukocytes active in disease,including multiple populations of myeloid cells,T cells,natural killer cells and B cells that demonstrated both pro-inflammatory responses and inflammation-resolving responses. We found evidence of local activation of B cells correlated with an age-associated B-cell signature and evidence of progressive stages of monocyte differentiation within the kidney. A clear interferon response was observed in most cells. Two chemokine receptors,CXCR4 and CX3CR1,were broadly expressed,implying a potentially central role in cell trafficking. Gene expression of immune cells in urine and kidney was highly correlated,which would suggest that urine might serve as a surrogate for kidney biopsies.
View Publication
Reference
S. Arandjelovic et al. (feb 2019)
Nature immunology 20 2 141--151
A noncanonical role for the engulfment gene ELMO1 in neutrophils that promotes inflammatory arthritis.
Rheumatoid arthritis is characterized by progressive joint inflammation and affects {\~{}}1{\%} of the human population. We noted single-nucleotide polymorphisms (SNPs) in the apoptotic cell-engulfment genes ELMO1,DOCK2,and RAC1 linked to rheumatoid arthritis. As ELMO1 promotes cytoskeletal reorganization during engulfment,we hypothesized that ELMO1 loss would worsen inflammatory arthritis. Surprisingly,Elmo1-deficient mice showed reduced joint inflammation in acute and chronic arthritis models. Genetic and cell-biology studies revealed that ELMO1 associates with receptors linked to neutrophil function in arthritis and regulates activation and early neutrophil recruitment to the joints,without general inhibition of inflammatory responses. Further,neutrophils from the peripheral blood of human donors that carry the SNP in ELMO1 associated with arthritis display increased migratory capacity,whereas ELMO1 knockdown reduces human neutrophil migration to chemokines linked to arthritis. These data identify 'noncanonical' roles for ELMO1 as an important cytoplasmic regulator of specific neutrophil receptors and promoter of arthritis.
View Publication
Reference
D. G. W. Alanine et al. (jun 2019)
Cell 178 1 216--228
Human Antibodies that Slow Erythrocyte Invasion Potentiate Malaria-Neutralizing Antibodies.
The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is the leading target for next-generation vaccines against the disease-causing blood-stage of malaria. However,little is known about how human antibodies confer functional immunity against this antigen. We isolated a panel of human monoclonal antibodies (mAbs) against PfRH5 from peripheral blood B cells from vaccinees in the first clinical trial of a PfRH5-based vaccine. We identified a subset of mAbs with neutralizing activity that bind to three distinct sites and another subset of mAbs that are non-functional,or even antagonistic to neutralizing antibodies. We also identify the epitope of a novel group of non-neutralizing antibodies that significantly reduce the speed of red blood cell invasion by the merozoite,thereby potentiating the effect of all neutralizing PfRH5 antibodies as well as synergizing with antibodies targeting other malaria invasion proteins. Our results provide a roadmap for structure-guided vaccine development to maximize antibody efficacy against blood-stage malaria.
View Publication
Reference
F. Ahmed et al. (apr 2019)
Cells 8 4
Chronic Hepatitis C Virus Infection Impairs M1 Macrophage Differentiation and Contributes to CD8+ T-Cell Dysfunction.
Chronic hepatitis C virus (HCV) infection causes generalized CD8+ T cell impairment,not limited to HCV-specific CD8+ T-cells. Liver-infiltrating monocyte-derived macrophages (MDMs) contribute to the local micro-environment and can interact with and influence cells routinely trafficking through the liver,including CD8+ T-cells. MDMs can be polarized into M1 (classically activated) and M2a,M2b,and M2c (alternatively activated) phenotypes that perform pro- and anti-inflammatory functions,respectively. The impact of chronic HCV infection on MDM subset functions is not known. Our results show that M1 cells generated from chronic HCV patients acquire M2 characteristics,such as increased CD86 expression and IL-10 secretion,compared to uninfected controls. In contrast,M2 subsets from HCV-infected individuals acquired M1-like features by secreting more IL-12 and IFN-gamma. The severity of liver disease was also associated with altered macrophage subset differentiation. In co-cultures with autologous CD8+ T-cells from controls,M1 macrophages alone significantly increased CD8+ T cell IFN-gamma expression in a cytokine-independent and cell-contact-dependent manner. However,M1 macrophages from HCV-infected individuals significantly decreased IFN-gamma expression in CD8+ T-cells. Therefore,altered M1 macrophage differentiation in chronic HCV infection may contribute to observed CD8+ T-cell dysfunction. Understanding the immunological perturbations in chronic HCV infection will lead to the identification of therapeutic targets to restore immune function in HCV+ individuals,and aid in the mitigation of associated negative clinical outcomes.
View Publication
Reference
W. Abplanalp et al. (jul 2019)
Journal of the American Heart Association 8 13 e013041
Carnosine Supplementation Mitigates the Deleterious Effects of Particulate Matter Exposure in Mice.
Background Exposure to fine airborne particulate matter ( PM 2.5) induces quantitative and qualitative defects in bone marrow-derived endothelial progenitor cells of mice,and similar outcomes in humans may contribute to vascular dysfunction and the cardiovascular morbidity and mortality associated with PM 2.5 exposure. Nevertheless,mechanisms underlying the pervasive effects of PM 2.5 are unclear and effective interventional strategies to mitigate against PM 2.5 toxicity are lacking. Furthermore,whether PM 2.5 exposure affects other types of bone marrow stem cells leading to additional hematological or immunological dysfunction is not clear. Methods and Results Mice given normal drinking water or that supplemented with carnosine,a naturally occurring,nucleophilic di-peptide that binds reactive aldehydes,were exposed to filtered air or concentrated ambient particles. Mice drinking normal water and exposed to concentrated ambient particles demonstrated a depletion of bone marrow hematopoietic stem cells but no change in mesenchymal stem cells. However,HSC depletion was significantly attenuated when the mice were placed on drinking water containing carnosine. Carnosine supplementation also increased the levels of carnosine-propanal conjugates in the urine of CAPs-exposed mice and prevented the concentrated ambient particles-induced dysfunction of endothelial progenitor cells as assessed by in vitro and in vivo assays. Conclusions These results suggest that exposure to PM 2.5 has pervasive effects on different bone marrow stem cell populations and that PM 2.5-induced hematopoietic stem cells depletion,endothelial progenitor cell dysfunction,and defects in vascular repair can be mitigated by excess carnosine. Carnosine supplementation may be a viable approach for preventing PM 2.5-induced immune dysfunction and cardiovascular injury in humans.
View Publication
Reference
J. R. Lynch et al. (JAN 2019)
Leukemia
JMJD1C-mediated metabolic dysregulation contributes to HOXA9-dependent leukemogenesis.
Abnormal metabolism is a fundamental hallmark of cancer and represents a therapeutic opportunity,yet its regulation by oncogenes remains poorly understood. Here,we uncover that JMJD1C,a jumonji C (JmjC)-containing H3K9 demethylase,is a critical regulator of aberrant metabolic processes in homeobox A9 (HOXA9)-dependent acute myeloid leukemia (AML). JMJD1C overexpression increases in vivo cell proliferation and tumorigenicity through demethylase-independent upregulation of a glycolytic and oxidative program,which sustains leukemic cell bioenergetics and contributes to an aggressive AML phenotype in vivo. Targeting JMJD1C-mediated metabolism via pharmacologic inhibition of glycolysis and oxidative phosphorylation led to ATP depletion,induced necrosis/apoptosis and decreased tumor growth in vivo in leukemias co-expressing JMJD1C and HOXA9. The anti-metabolic therapy effectively diminished AML stem/progenitor cells and reduced tumor burden in a primary AML patient-derived xenograft. Our data establish a direct link between drug responses and endogenous expression of JMJD1C and HOXA9 in human AML cell line- and patient-derived xenografts. These findings demonstrate a previously unappreciated role for JMJD1C in counteracting adverse metabolic changes and retaining the metabolic integrity during tumorigenesis,which can be exploited therapeutically.
View Publication
Reference
A. McQuade et al. (DEC 2018)
Molecular neurodegeneration 13 1 67
Development and validation of a simplified method to generate human microglia from pluripotent stem cells.
BACKGROUND Microglia,the principle immune cells of the brain,play important roles in neuronal development,homeostatic function and neurodegenerative disease. Recent genetic studies have further highlighted the importance of microglia in neurodegeneration with the identification of disease risk polymorphisms in many microglial genes. To better understand the role of these genes in microglial biology and disease,we,and others,have developed methods to differentiate microglia from human induced pluripotent stem cells (iPSCs). While the development of these methods has begun to enable important new studies of microglial biology,labs with little prior stem cell experience have sometimes found it challenging to adopt these complex protocols. Therefore,we have now developed a greatly simplified approach to generate large numbers of highly pure human microglia. RESULTS iPSCs are first differentiated toward a mesodermal,hematopoietic lineage using commercially available media. Highly pure populations of non-adherent CD43+ hematopoietic progenitors are then simply transferred to media that includes three key cytokines (M-CSF,IL-34,and TGF$\beta$-1) that promote differentiation of homeostatic microglia. This updated approach avoids the prior requirement for hypoxic incubation,complex media formulation,FACS sorting,or co-culture,thereby significantly simplifying human microglial generation. To confirm that the resulting cells are equivalent to previously developed iPSC-microglia,we performed RNA-sequencing,functional testing,and transplantation studies. Our findings reveal that microglia generated via this simplified method are virtually identical to iPS-microglia produced via our previously published approach. To also determine whether a small molecule activator of TGF$\beta$ signaling (IDE1) can be used to replace recombinant TGF$\beta$1,further reducing costs,we examined growth kinetics and the transcriptome of cells differentiated with IDE1. These data demonstrate that a microglial cell can indeed be produced using this alternative approach,although transcriptional differences do occur that should be considered. CONCLUSION We anticipate that this new and greatly simplified protocol will enable many interested labs,including those with little prior stem cell or flow cytometry experience,to generate and study human iPS-microglia. By combining this method with other advances such as CRISPR-gene editing and xenotransplantation,the field will continue to improve our understanding of microglial biology and their important roles in human development,homeostasis,and disease.
View Publication
Reference
K. Kwak et al. (NOV 2018)
Science immunology 3 29
Intrinsic properties of human germinal center B cells set antigen affinity thresholds.
Protective antibody responses to vaccination or infection depend on affinity maturation,a process by which high-affinity germinal center (GC) B cells are selected on the basis of their ability to bind,gather,and present antigen to T follicular helper (Tfh) cells. Here,we show that human GC B cells have intrinsically higher-affinity thresholds for both B cell antigen receptor (BCR) signaling and antigen gathering as compared with na{\{i}}ve B cells and that these functions are mediated by distinct cellular structures and pathways that ultimately lead to antigen affinity- and Tfh cell-dependent differentiation to plasma cells. GC B cells bound antigen through highly dynamic actin- and ezrin-rich pod-like structures that concentrated BCRs. The behavior of these structures was dictated by the intrinsic antigen affinity thresholds of GC B cells. Low-affinity antigens triggered continuous engagement and disengagement of membrane-associated antigens whereas high-affinity antigens induced stable synapse formation. The pod-like structures also mediated affinity-dependent antigen internalization by unconventional pathways distinct from those of na{\"{i}}ve B cells. Thus intrinsic properties of human GC B cells set thresholds for affinity selection."""
View Publication
Reference
X. Du et al. (NOV 2018)
Proceedings of the National Academy of Sciences of the United States of America
CD226 regulates natural killer cell antitumor responses via phosphorylation-mediated inactivation of transcription factor FOXO1.
Natural killer (NK) cell recognition of tumor cells is mediated through activating receptors such as CD226,with suppression of effector functions often controlled by negative regulatory transcription factors such as FOXO1. Here we show that CD226 regulation of NK cell cytotoxicity is facilitated through inactivation of FOXO1. Gene-expression analysis of NK cells isolated from syngeneic tumors grown in wild-type or CD226-deficient mice revealed dysregulated expression of FOXO1-regulated genes in the absence of CD226. In vitro cytotoxicity and stimulation assays demonstrated that CD226 is required for optimal killing of tumor target cells,with engagement of its ligand CD155 resulting in phosphorylation of FOXO1. CD226 deficiency or anti-CD226 antibody blockade impaired cytotoxicity with concomitant compromised inactivation of FOXO1. Furthermore,inhibitors of FOXO1 phosphorylation abrogated CD226-mediated signaling and effector responses. These results define a pathway by which CD226 exerts control of NK cell responses against tumors.
View Publication