J. S. Saini et al. (MAY 2017)
Cell stem cell 20 5 635--647.e7
Nicotinamide Ameliorates Disease Phenotypes in a Human iPSC Model of Age-Related Macular Degeneration.
Age-related macular degeneration (AMD) affects the retinal pigment epithelium (RPE),a cell monolayer essential for photoreceptor survival,and is the leading cause of vision loss in the elderly. There are no disease-altering therapies for dry AMD,which is characterized by accumulation of subretinal drusen deposits and complement-driven inflammation. We report the derivation of human-induced pluripotent stem cells (hiPSCs) from patients with diagnosed AMD,including two donors with the rare ARMS2/HTRA1 homozygous genotype. The hiPSC-derived RPE cells produce several AMD/drusen-related proteins,and those from the AMD donors show significantly increased complement and inflammatory factors,which are most exaggerated in the ARMS2/HTRA1 lines. Using a panel of AMD biomarkers and candidate drug screening,combined with transcriptome analysis,we discover that nicotinamide (NAM) ameliorated disease-related phenotypes by inhibiting drusen proteins and inflammatory and complement factors while upregulating nucleosome,ribosome,and chromatin-modifying genes. Thus,targeting NAM-regulated pathways is a promising avenue for developing therapeutics to combat AMD.
View Publication
Reference
J. W. Foster et al. (JAN 2017)
Scientific reports 7 41286
Cornea organoids from human induced pluripotent stem cells.
The cornea is the transparent outermost surface of the eye,consisting of a stratified epithelium,a collagenous stroma and an innermost single-cell layered endothelium and providing 2/3 of the refractive power of the eye. Multiple diseases of the cornea arise from genetic defects where the ultimate phenotype can be influenced by cross talk between the cell types and the extracellular matrix. Cell culture modeling of diseases can benefit from cornea organoids that include multiple corneal cell types and extracellular matrices. Here we present human iPS cell-derived organoids through sequential rounds of differentiation programs. These organoids share features of the developing cornea,harboring three distinct cell types with expression of key epithelial,stromal and endothelial cell markers. Cornea organoid cultures provide a powerful 3D model system for investigating corneal developmental processes and their disruptions in diseased conditions.
View Publication
Reference
S. Dhakal et al. ( 2017)
Vaccine 35 8 1124--1131
Polyanhydride nanovaccine against swine influenza virus in pigs.
We have recently demonstrated the effectiveness of an influenza A virus (IAV) subunit vaccine based on biodegradable polyanhydride nanoparticles delivery in mice. In the present study,we evaluated the efficacy of ∼200nm polyanhydride nanoparticles encapsulating inactivated swine influenza A virus (SwIAV) as a vaccine to induce protective immunity against a heterologous IAV challenge in pigs. Nursery pigs were vaccinated intranasally twice with inactivated SwIAV H1N2 (KAg) or polyanhydride nanoparticle-encapsulated KAg (KAg nanovaccine),and efficacy was evaluated against a heterologous zoonotic virulent SwIAV H1N1 challenge. Pigs were monitored for fever daily. Local and systemic antibody responses,antigen-specific proliferation of peripheral blood mononuclear cells,gross and microscopic lung lesions,and virus load in the respiratory tract were compared among the groups of animals. Our pre-challenge results indicated that KAg nanovaccine induced virus-specific lymphocyte proliferation and increased the frequency of CD4+CD8$\alpha$$\alpha$+ T helper and CD8+ cytotoxic T cells in peripheral blood mononuclear cells. KAg nanovaccine-immunized pigs were protected from fever following SwIAV challenge. In addition,pigs immunized with the KAg nanovaccine presented with lower viral antigens in lung sections and had 6 to 8-fold reduction in nasal shedding of SwIAV four days post-challenge compared to control animals. Immunologically,increased IFN-$\gamma$ secreting T lymphocyte populations against both the vaccine and challenge viruses were detected in KAg nanovaccine-immunized pigs compared to the animals immunized with KAg alone. However,in the KAg nanovaccine-immunized pigs,hemagglutination inhibition,IgG and IgA antibody responses,and virus neutralization titers were comparable to that in the animals immunized with KAg alone. Overall,our data indicated that intranasal delivery of polyanhydride-based SwIAV nanovaccine augmented antigen-specific cellular immune response in pigs,with promise to induce cross-protective immunity.
View Publication
Reference
J. E. Adair et al. ( 2016)
Nature communications 7 13173
Semi-automated closed system manufacturing of lentivirus gene-modified haematopoietic stem cells for gene therapy.
Haematopoietic stem cell (HSC) gene therapy has demonstrated potential to treat many diseases. However,current state of the art requires sophisticated ex vivo gene transfer in a dedicated Good Manufacturing Practices facility,limiting availability. An automated process would improve the availability and standardized manufacture of HSC gene therapy. Here,we develop a novel program for semi-automated cell isolation and culture equipment to permit complete benchtop generation of gene-modified CD34+ blood cell products for transplantation. These cell products meet current manufacturing quality standards for both mobilized leukapheresis and bone marrow,and reconstitute human haematopoiesis in immunocompromised mice. Importantly,nonhuman primate autologous gene-modified CD34+ cell products are capable of stable,polyclonal multilineage reconstitution with follow-up of more than 1 year. These data demonstrate proof of concept for point-of-care delivery of HSC gene therapy. Given the many target diseases for gene therapy,there is enormous potential for this approach to treat patients on a global scale.
View Publication
Reference
B. A. Jonas et al. ( 2016)
PloS one 11 7 e0159189
Alkylator-Induced and Patient-Derived Xenograft Mouse Models of Therapy-Related Myeloid Neoplasms Model Clinical Disease and Suggest the Presence of Multiple Cell Subpopulations with Leukemia Stem Cell Activity.
Acute myeloid leukemia (AML) is a heterogeneous group of aggressive bone marrow cancers arising from transformed hematopoietic stem and progenitor cells (HSPC). Therapy-related AML and MDS (t-AML/MDS) comprise a subset of AML cases occurring after exposure to alkylating chemotherapy and/or radiation and are associated with a very poor prognosis. Less is known about the pathogenesis and disease-initiating/leukemia stem cell (LSC) subpopulations of t-AML/MDS compared to their de novo counterparts. Here,we report the development of mouse models of t-AML/MDS. First,we modeled alkylator-induced t-AML/MDS by exposing wild type adult mice to N-ethyl-N-nitrosurea (ENU),resulting in several models of AML and MDS that have clinical and pathologic characteristics consistent with human t-AML/MDS including cytopenia,myelodysplasia,and shortened overall survival. These models were limited by their inability to transplant clinically aggressive disease. Second,we established three patient-derived xenograft models of human t-AML. These models led to rapidly fatal disease in recipient immunodeficient xenografted mice. LSC activity was identified in multiple HSPC subpopulations suggesting there is no canonical LSC immunophenotype in human t-AML. Overall,we report several new t-AML/MDS mouse models that could potentially be used to further define disease pathogenesis and test novel therapeutics.
View Publication
Reference
S. S. De Ravin et al. (APR 2016)
Nature biotechnology 34 4 424--9
Targeted gene addition in human CD34(+) hematopoietic cells for correction of X-linked chronic granulomatous disease.
Gene therapy with genetically modified human CD34(+) hematopoietic stem and progenitor cells (HSPCs) may be safer using targeted integration (TI) of transgenes into a genomic 'safe harbor' site rather than random viral integration. We demonstrate that temporally optimized delivery of zinc finger nuclease mRNA via electroporation and adeno-associated virus (AAV) 6 delivery of donor constructs in human HSPCs approaches clinically relevant levels of TI into the AAVS1 safe harbor locus. Up to 58{\%} Venus(+) HSPCs with 6-16{\%} human cell marking were observed following engraftment into mice. In HSPCs from patients with X-linked chronic granulomatous disease (X-CGD),caused by mutations in the gp91phox subunit of the NADPH oxidase,TI of a gp91phox transgene into AAVS1 resulted in ∼15{\%} gp91phox expression and increased NADPH oxidase activity in ex vivo-derived neutrophils. In mice transplanted with corrected HSPCs,4-11{\%} of human cells in the bone marrow expressed gp91phox. This method for TI into AAVS1 may be broadly applicable to correction of other monogenic diseases.
View Publication
Reference
M. P. Yaffe et al. ( 2016)
Raising the standards of stem cell line quality
Yaffe and colleagues discuss the issues surrounding the authentication and quality of induced pluripotent stem cells.
Reference
J. Drost et al. (FEB 2016)
Nature protocols 11 2 347--58
Organoid culture systems for prostate epithelial and cancer tissue.
This protocol describes a strategy for the generation of 3D prostate organoid cultures from healthy mouse and human prostate cells (either bulk or FACS-sorted single luminal and basal cells),metastatic prostate cancer lesions and circulating tumor cells. Organoids derived from healthy material contain the differentiated luminal and basal cell types,whereas organoids derived from prostate cancer tissue mimic the histology of the tumor. We explain how to establish these cultures in the fully defined serum-free conditioned medium that is required to sustain organoid growth. Starting with the plating of digested tissue material,full-grown organoids can usually be obtained in ∼2 weeks. The culture protocol we describe here is currently the only one that allows the growth of both the luminal and basal prostatic epithelial lineages,as well as the growth of advanced prostate cancers. Organoids established using this protocol can be used to study many different aspects of prostate biology,including homeostasis,tumorigenesis and drug discovery.
View Publication
Reference
N. H. Overgaard et al. ( 2015)
Frontiers in genetics 6 286
Establishing the pig as a large animal model for vaccine development against human cancer.
Immunotherapy has increased overall survival of metastatic cancer patients,and cancer antigens are promising vaccine targets. To fulfill the promise,appropriate tailoring of the vaccine formulations to mount in vivo cytotoxic T cell (CTL) responses toward co-delivered cancer antigens is essential. Previous development of therapeutic cancer vaccines has largely been based on studies in mice,and the majority of these candidate vaccines failed to induce therapeutic responses in the subsequent human clinical trials. Given that antigen dose and vaccine volume in pigs are translatable to humans and the porcine immunome is closer related to the human counterpart,we here introduce pigs as a supplementary large animal model for human cancer vaccine development. IDO and RhoC,both important in human cancer development and progression,were used as vaccine targets and 12 pigs were immunized with overlapping 20mer peptides spanning the entire porcine IDO and RhoC sequences formulated in CTL-inducing adjuvants: CAF09,CASAC,Montanide ISA 51 VG,or PBS. Taking advantage of recombinant swine MHC class I molecules (SLAs),the peptide-SLA complex stability was measured for 198 IDO- or RhoC-derived 9-11mer peptides predicted to bind to SLA-1(*)04:01,-1(*)07:02,-2(*)04:01,-2(*)05:02,and/or -3(*)04:01. This identified 89 stable (t½ ≥ 0.5 h) peptide-SLA complexes. By IFN-$\gamma$ release in PBMC cultures we monitored the vaccine-induced peptide-specific CTL responses,and found responses to both IDO- and RhoC-derived peptides across all groups with no adjuvant being superior. These findings support the further use of pigs as a large animal model for vaccine development against human cancer.
View Publication
Reference
D. Gao et al. (SEP 2014)
Cell 159 1 176--187
Organoid cultures derived from patients with advanced prostate cancer.
The lack of in vitro prostate cancer models that recapitulate the diversity of human prostate cancer has hampered progress in understanding disease pathogenesis and therapy response. Using a 3D organoid system,we report success in long-term culture of prostate cancer from biopsy specimens and circulating tumor cells. The first seven fully characterized organoid lines recapitulate the molecular diversity of prostate cancer subtypes,including TMPRSS2-ERG fusion,SPOP mutation,SPINK1 overexpression,and CHD1 loss. Whole-exome sequencing shows a low mutational burden,consistent with genomics studies,but with mutations in FOXA1 and PIK3R1,as well as in DNA repair and chromatin modifier pathways that have been reported in advanced disease. Loss of p53 and RB tumor suppressor pathway function are the most common feature shared across the organoid lines. The methodology described here should enable the generation of a large repertoire of patient-derived prostate cancer lines amenable to genetic and pharmacologic studies.
View Publication
Reference
C. L. Hodgkinson et al. (AUG 2014)
Nature medicine 20 8 897--903
Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer.
Small-cell lung cancer (SCLC),an aggressive neuroendocrine tumor with early dissemination and dismal prognosis,accounts for 15-20{\%} of lung cancer cases and ∼200,000 deaths each year. Most cases are inoperable,and biopsies to investigate SCLC biology are rarely obtainable. Circulating tumor cells (CTCs),which are prevalent in SCLC,present a readily accessible 'liquid biopsy'. Here we show that CTCs from patients with either chemosensitive or chemorefractory SCLC are tumorigenic in immune-compromised mice,and the resultant CTC-derived explants (CDXs) mirror the donor patient's response to platinum and etoposide chemotherapy. Genomic analysis of isolated CTCs revealed considerable similarity to the corresponding CDX. Most marked differences were observed between CDXs from patients with different clinical outcomes. These data demonstrate that CTC molecular analysis via serial blood sampling could facilitate delivery of personalized medicine for SCLC. CDXs are readily passaged,and these unique mouse models provide tractable systems for therapy testing and understanding drug resistance mechanisms.
View Publication
Reference
B. Miles et al. (AUG 2013)
Journal of leukocyte biology 94 2 281--9
Noncanonical dendritic cell differentiation and survival driven by a bacteremic pathogen.
Maintenance of blood DC homeostasis is essential to preventing autoimmunity while controlling chronic infection. However,the ability of bacteremic pathogens to directly regulate blood DC homeostasis has not been defined. One such bacteremic pathogen,Porphyromonas gingivalis,is shown by our group to survive within mDCs under aerobic conditions and therein,metastasize from its oral mucosal niche. This is accompanied by expansion of the blood mDC pool in vivo,independently of canonical DC poietins. We presently know little of how this bacteremic pathogen causes blood DC expansion and the pathophysiological significance. This work shows that optimum differentiation of MoDCs from primary human monocytes,with or without GM-CSF/IL-4,is dependent on infection with P. gingivalis strains expressing the DC-SIGN ligand mfa-1. DC differentiation is lost when DC-SIGN is blocked with its ligand HIV gp120 or knocked out by siRNA gene silencing. Thus,we have identified a novel,noncanonical pathway of DC differentiation. We term these PDDCs and show that PDDCs are bona fide DCs,based on phenotype and phagocytic activity when immature and the ability to up-regulate accessory molecules and stimulate allo-CD4(+) T cell proliferation when matured. The latter is dependent on the P. gingivalis strain used to initially educate" PDDCs. Moreover we show that P. gingivalis-infected conventional MoDCs become resistant to apoptosis and inflammatory pyroptosis as determined by levels of Annexin V and caspase-8 -3/7 and -1. Taken together we provide new insights into how a relatively asymptomatic bacteremia may influence immune homeostasis and promote chronic inflammation."
View Publication