Lu HF et al. (MAR 2012)
Biomaterials 33 8 2419--30
A 3D microfibrous scaffold for long-term human pluripotent stem cell self-renewal under chemically defined conditions.
Realizing the potential of human pluripotent stem cell (hPSC)-based therapy requires the development of defined scalable culture systems with efficient expansion,differentiation and isolation protocols. We report an engineered 3D microfiber system that efficiently supports long-term hPSCs self-renewal under chemically defined conditions. The unique feature of this system lies in the application of a 3D ECM-like environment in which cells are embedded,that affords: (i) uniform high cell loading density in individual cell-laden constructs (∼10 7 cells/ml); (ii) quick recovery of encapsulated cells (textless10min at 37°C) with excellent preservation of cell viability and 3D multicellular structure; (iii) direct cryopreservation of the encapsulated cells in situ in the microfibers with textgreater17-fold higher cell viability compared to those cultured on Matrigel surface; (iv) long-term hPSC propagation under chemically defined conditions. Four hPSC lines propagated in the microfibrous scaffold for 10 consecutive passages were capable of maintaining an undifferentiated phenotype as demonstrated by the expression of stem cell markers and stable karyotype invitro and the ability to form derivatives of the three germ layers both invitro and invivo. Our 3D microfibrous system has the potential for large-scale cultivation of transplantable hESCs and derivatives for clinical applications. textcopyright 2011 Elsevier Ltd.
View Publication
A 3D sphere culture system containing functional polymers for large-scale human pluripotent stem cell production
Utilizing human pluripotent stem cells (hPSCs) in cell-based therapy and drug discovery requires large-scale cell production. However,scaling up conventional adherent cultures presents challenges of maintaining a uniform high quality at low cost. In this regard,suspension cultures are a viable alternative,because they are scalable and do not require adhesion surfaces. 3D culture systems such as bioreactors can be exploited for large-scale production. However,the limitations of current suspension culture methods include spontaneous fusion between cell aggregates and suboptimal passaging methods by dissociation and reaggregation. 3D culture systems that dynamically stir carrier beads or cell aggregates should be refined to reduce shearing forces that damage hPSCs. Here,we report a simple 3D sphere culture system that incorporates mechanical passaging and functional polymers. This setup resolves major problems associated with suspension culture methods and dynamic stirring systems and may be optimal for applications involving large-scale hPSC production. ?? 2014 The Authors.
View Publication
(Jun 2025)
iScience 28 8
A 3D tumor spheroid model with robust T cell infiltration for evaluating immune cell engagers
SummaryA strong interest in drugs targeting the tumor microenvironment (TME) necessitates new experimental systems that incorporate key TME components. Compared to traditional 2D cell lines,3D ex vivo spheroids from patient-derived xenograft (PDX) materials may better capture patient tumor characteristics. We developed and validated a 3D tumor spheroid model from non-small cell lung cancer (NSCLC) PDXs to enable T cell infiltration. Histologic and transcriptomic analysis suggested that tumor spheroids closely recapitulate the source PDX tumor tissues. Consistent T cell infiltration into tumor spheroids was achieved using a well-established magnetic nanoparticle technology,which maintained T cell function and tumor-killing activity. Drug treatment studies with immunotherapy agents also demonstrated the potential scalability of 3D tumor-T cell spheroids in assessing drug activity,including tumor viability and cytokine secretion. This platform provides a useful tool for evaluating drug candidates that can be translated to patient tumor responses related to both tumor intrinsic and TME factors. Graphical abstract Highlights•We developed a 3D tumor spheroid model from lung cancer patient-derived xenografts•The model enabled robust T cell infiltration and preserved T cell cytotoxic functions•Histology and RNA-seq showed that tumor spheroids closely resembled source tumors•Proof-of-concept experiments showed this platform’s utility in preclinical drug testing Biological sciences; Biotechnology; Natural sciences; Tissue Engineering
View Publication
Lo SL et al. (MAY 2012)
Biochemical and biophysical research communications 421 3 616--620
A ??-sheet structure interacting peptide for intracellular protein delivery into human pluripotent stem cells and their derivatives
The advance in stem cell research relies largely on the efficiency and biocompatibility of technologies used to manipulate stem cells. In our previous study,we had designed an amphipathic peptide RV24 that can deliver proteins into cancer cell lines efficiently without significant side effects. Encouraged by this observation,we moved forward to test whether RV24 could be used to deliver proteins into human embryonic stem cells and human induced pluripotent stem cells. RV24 successfully mediated protein delivery into these pluripotent stem cells,as well as their derivatives including neural stem cells and dendritic cells. Based on NMR studies and particle surface charge measurements,we proposed that hydrophobic domain of RV24 interacts with ??-sheet structures of the proteins,followed by formation of peptide cage" to facilitate delivery across cellular membrane. These findings suggest the feasibility of using amphipathic peptide to deliver functional proteins intracellularly for stem cell research. ?? 2012 Elsevier Inc."
View Publication
Rivera T et al. (JAN 2017)
Nature structural & molecular biology 24 1 30--39
A balance between elongation and trimming regulates telomere stability in stem cells.
Telomere length maintenance ensures self-renewal of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs); however,the mechanisms governing telomere length homeostasis in these cell types are unclear. Here,we report that telomere length is determined by the balance between telomere elongation,which is mediated by telomerase,and telomere trimming,which is controlled by XRCC3 and Nbs1,homologous recombination proteins that generate single-stranded C-rich telomeric DNA and double-stranded telomeric circular DNA (T-circles),respectively. We found that reprogramming of differentiated cells induces T-circle and single-stranded C-rich telomeric DNA accumulation,indicating the activation of telomere trimming pathways that compensate telomerase-dependent telomere elongation in hiPSCs. Excessive telomere elongation compromises telomere stability and promotes the formation of partially single-stranded telomeric DNA circles (C-circles) in hESCs,suggesting heightened sensitivity of stem cells to replication stress at overly long telomeres. Thus,tight control of telomere length homeostasis is essential to maintain telomere stability in hESCs.
View Publication
C.-Y. Lai et al. (sep 2022)
Journal of immunology (Baltimore,Md. : 1950) 209 6 1118--1127
A Bcl6 Intronic Element Regulates T Follicular Helper Cell Differentiation.
In response to an intracellular infectious agent,the immune system produces a specific cellular response as well as a T cell-dependent Ab response. Precursor T cells differentiate into effector T cells,including Th1 cells,and T follicular helper (TFH) cells. The latter cooperate with B cells to form germinal centers and induce the formation of Ab-forming plasmacytes. One major focal point for control of T cell differentiation is the transcription factor BCL6. In this study,we demonstrated that the Bcl6 gene is regulated by FOXO1-binding,cis-acting sequences located in a highly conserved region of the first Bcl6 intron. In both mouse and human T cells,deletion of the tandem FOXO1 binding sites increased the expression of BCL6 and enhanced the proportion of TFH cells. These results reveal a fundamental control point for cellular versus humoral immunity.
View Publication
(Feb 2025)
Nature Communications 16
A biallelically active embryonic enhancer dictates GNAS imprinting through allele-specific conformations
Genomic imprinting controls parental allele-specific gene expression via epigenetic mechanisms. Abnormal imprinting at the GNAS gene causes multiple phenotypes,including pseudohypoparathyroidism type-1B (PHP1B),a disorder of multihormone resistance. Microdeletions affecting the neighboring STX16 gene ablate an imprinting control region (STX16-ICR) of GNAS and lead to PHP1B upon maternal but not paternal inheritance. Mechanisms behind this imprinted inheritance mode remain unknown. Here,we show that the STX16-ICR forms different chromatin conformations with each GNAS parental allele and enhances two GNAS promoters in human embryonic stem cells. When these cells differentiate toward proximal renal tubule cells,STX16-ICR loses its effect,accompanied by a transition to a somatic cell-specific GNAS imprinting status. The activity of STX16-ICR depends on an OCT4 motif,whose disruption impacts transcript levels differentially on each allele. Therefore,a biallelically active embryonic enhancer dictates GNAS imprinting via different chromatin conformations,underlying the allele-specific pathogenicity of STX16-ICR microdeletions. STX16 microdeletions cause pseudohypoparathyroidism type-1B only on the maternal allele. Here,the authors show that the allele-specific pathogenicity reflects differential conformations of a biallelically active enhancer dictating GNAS imprinting.
View Publication
S. Brabetz et al. ( 2018)
Nature medicine 24 11 1752--1761
A biobank of patient-derived pediatric brain tumor models.
Brain tumors are the leading cause of cancer-related death in children. Genomic studies have provided insights into molecular subgroups and oncogenic drivers of pediatric brain tumors that may lead to novel therapeutic strategies. To evaluate new treatments,better preclinical models adequately reflecting the biological heterogeneity are needed. Through the Children's Oncology Group ACNS02B3 study,we have generated and comprehensively characterized 30 patient-derived orthotopic xenograft models and seven cell lines representing 14 molecular subgroups of pediatric brain tumors. Patient-derived orthotopic xenograft models were found to be representative of the human tumors they were derived from in terms of histology,immunohistochemistry,gene expression,DNA methylation,copy number,and mutational profiles. In vivo drug sensitivity of targeted therapeutics was associated with distinct molecular tumor subgroups and specific genetic alterations. These models and their molecular characterization provide an unprecedented resource for the cancer community to study key oncogenic drivers and to evaluate novel treatment strategies.
View Publication
Dye BR et al. (SEP 2016)
eLife 5
A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids.
Human pluripotent stem cell (hPSC) derived tissues often remain developmentally immature in vitro,and become more adult-like in their structure,cellular diversity and function following transplantation into immunocompromised mice. Previously we have demonstrated that hPSC-derived human lung organoids (HLOs) resembled human fetal lung tissue in vitro (Dye et al.,2015). Here we show that HLOs required a bioartificial microporous poly(lactide-co-glycolide) (PLG) scaffold niche for successful engraftment,long-term survival,and maturation of lung epithelium in vivo. Analysis of scaffold-grown transplanted tissue showed airway-like tissue with enhanced epithelial structure and organization compared to HLOs grown in vitro. By further comparing in vitro and in vivo grown HLOs with fetal and adult human lung tissue,we found that in vivo transplanted HLOs had improved cellular differentiation of secretory lineages that is reflective of differences between fetal and adult tissue,resulting in airway-like structures that were remarkably similar to the native adult human lung.
View Publication
J. L. D. Andrés et al. (Sep 2024)
Materials Today Bio 29 6
A bioengineered tumor matrix-based scaffold for the evaluation of melatonin efficacy on head and neck squamous cancer stem cells
Head and neck squamous cell carcinoma (HNSCC) presents a significant challenge worldwide due to its aggressiveness and high recurrence rates post-treatment,often linked to cancer stem cells (CSCs). Melatonin shows promise as a potent tumor suppressor; however,the effects of melatonin on CSCs remain unclear,and the development of models that closely resemble tumor heterogeneity could help to better understand the effects of this molecule. This study developed a tumor scaffold based on patient fibroblast-derived decellularized extracellular matrix that mimics the HNSCC microenvironment. Our study investigates the antitumoral effects of melatonin within this context. We validated its strong antiproliferative effect on HNSCC CSCs and the reduction of tumor invasion and migration markers,even in a strongly chemoprotective environment,as it is required to increase the minimum doses necessary to impact tumor viability compared to the non-scaffolded tumorspheres culture. Moreover,melatonin exhibited no cytotoxic effects on healthy cells co-cultured in the tumor hydrogel. This scaffold-based platform allows an in vitro study closer to HNSCC tumor reality,including CSCs,stromal component,and a biomimetic matrix,providing a new valuable research tool in precision oncology.
View Publication
Rubin JS et al. (JAN 1991)
Proceedings of the National Academy of Sciences of the United States of America 88 2 415--9
A broad-spectrum human lung fibroblast-derived mitogen is a variant of hepatocyte growth factor.
A heparin-binding mitogen was isolated from conditioned medium of human embryonic lung fibroblasts. It exhibited broad target-cell specificity whose pattern was distinct from that of any known growth factor. It rapidly stimulated tyrosine phosphorylation of a 145-kDa protein in responsive cells,suggesting that its signaling pathways involved activation of a tyrosine kinase. Purification identified a major polypeptide with an apparent molecular mass of 87 kDa under reducing conditions. Partial amino acid sequence analysis and cDNA cloning revealed that it was a variant of hepatocyte growth factor,a mitogen thought to be specific for hepatic cells and structurally related to plasminogen. Recombinant expression of the cDNA in COS-1 cells established that it encoded the purified growth factor. Its site of synthesis and spectrum of targets imply that this growth factor may play an important role as a paracrine mediator of the proliferation of melanocytes and endothelial cells,as well as cells of epithelial origin.
View Publication
Benhamou D et al. (JUL 2016)
Cell reports 16 2 419--31
A c-Myc/miR17-92/Pten Axis Controls PI3K-Mediated Positive and Negative Selection in B Cell Development and Reconstitutes CD19 Deficiency.
PI3K activity determines positive and negative selection of B cells,a key process for immune tolerance and B cell maturation. Activation of PI3K is balanced by phosphatase and tensin homolog (Pten),the PI3K's main antagonistic phosphatase. Yet,the extent of feedback regulation between PI3K activity and Pten expression during B cell development is unclear. Here,we show that PI3K control of this process is achieved post-transcriptionally by an axis composed of a transcription factor (c-Myc),a microRNA (miR17-92),and Pten. Enhancing activation of this axis through overexpression of miR17-92 reconstitutes the impaired PI3K activity for positive selection in CD19-deficient B cells and restores most of the B cell developmental impairments that are evident in CD19-deficient mice. Using a genetic approach of deletion and complementation,we show that the c-Myc/miR17-92/Pten axis critically controls PI3K activity and the sensitivity of immature B cells to negative selection imposed by activation-induced cell death.
View Publication