C. R. Seehus et al. (DEC 2017)
Nature communications 8 1 1900
Alternative activation generates IL-10 producing type 2 innate lymphoid cells.
Type 2 innate lymphoid cells (ILC2) share cytokine and transcription factor expression with CD4+ Th2 cells,but functional diversity of the ILC2 lineage has yet to be fully explored. Here,we show induction of a molecularly distinct subset of activated lung ILC2,termed ILC210. These cells produce IL-10 and downregulate some pro-inflammatory genes. Signals that generate ILC210 are distinct from those that induce IL-13 production,and gene expression data indicate that an alternative activation pathway leads to the generation of ILC210. In vivo,IL-2 enhances ILC210 generation and is associated with decreased eosinophil recruitment to the lung. Unlike most activated ILC2,the ILC210 population contracts after cessation of stimulation in vivo,with maintenance of a subset that can be recalled by restimulation,analogous to T-cell effector cell and memory cell generation. These data demonstrate the generation of a previously unappreciated IL-10 producing ILC2 effector cell population.
View Publication
Chen KG et al. (JUL 2014)
Journal of visualized experiments : JoVE 89 1--10
Alternative cultures for human pluripotent stem cell production, maintenance, and genetic analysis.
Human pluripotent stem cells (hPSCs) hold great promise for regenerative medicine and biopharmaceutical applications. Currently,optimal culture and efficient expansion of large amounts of clinical-grade hPSCs are critical issues in hPSC-based therapies. Conventionally,hPSCs are propagated as colonies on both feeder and feeder-free culture systems. However,these methods have several major limitations,including low cell yields and generation of heterogeneously differentiated cells. To improve current hPSC culture methods,we have recently developed a new method,which is based on non-colony type monolayer (NCM) culture of dissociated single cells. Here,we present detailed NCM protocols based on the Rho-associated kinase (ROCK) inhibitor Y-27632. We also provide new information regarding NCM culture with different small molecules such as Y-39983 (ROCK I inhibitor),phenylbenzodioxane (ROCK II inhibitor),and thiazovivin (a novel ROCK inhibitor). We further extend our basic protocol to cultivate hPSCs on defined extracellular proteins such as the laminin isoform 521 (LN-521) without the use of ROCK inhibitors. Moreover,based on NCM,we have demonstrated efficient transfection or transduction of plasmid DNAs,lentiviral particles,and oligonucleotide-based microRNAs into hPSCs in order to genetically modify these cells for molecular analyses and drug discovery. The NCM-based methods overcome the major shortcomings of colony-type culture,and thus may be suitable for producing large amounts of homogeneous hPSCs for future clinical therapies,stem cell research,and drug discovery.
View Publication
A. Zhuravskaya et al. (Jun 2024)
Genome Biology 25 648–665
Alternative splicing coupled to nonsense-mediated decay coordinates downregulation of non-neuronal genes in developing mouse neurons
The functional coupling between alternative pre-mRNA splicing (AS) and the mRNA quality control mechanism called nonsense-mediated decay (NMD) can modulate transcript abundance. Previous studies have identified several examples of such a regulation in developing neurons. However,the systems-level effects of AS-NMD in this context are poorly understood. We developed an R package,factR2,which offers a comprehensive suite of AS-NMD analysis functions. Using this tool,we conducted a longitudinal analysis of gene expression in pluripotent stem cells undergoing induced neuronal differentiation. Our analysis uncovers hundreds of AS-NMD events with significant potential to regulate gene expression. Notably,this regulation is significantly overrepresented in specific functional groups of developmentally downregulated genes. Particularly strong association with gene downregulation is detected for alternative cassette exons stimulating NMD upon their inclusion into mature mRNA. By combining bioinformatic analyses with CRISPR/Cas9 genome editing and other experimental approaches we show that NMD-stimulating cassette exons regulated by the RNA-binding protein PTBP1 dampen the expression of their genes in developing neurons. We also provided evidence that the inclusion of NMD-stimulating cassette exons into mature mRNAs is temporally coordinated with NMD-independent gene repression mechanisms. Our study provides an accessible workflow for the discovery and prioritization of AS-NMD targets. It further argues that the AS-NMD pathway plays a widespread role in developing neurons by facilitating the downregulation of functionally related non-neuronal genes. The online version contains supplementary material available at 10.1186/s13059-024-03305-8.
View Publication
Alternative splicing of vasohibin-1 generates an inhibitor of endothelial cell proliferation, migration, and capillary tube formation.
OBJECTIVE: In this study,the alternative splicing product of vasohibin 1 (VASH1B) was analyzed in direct comparison to the major isoform (VASH1A) for antiangiogenic effects on endothelial colony forming cells (ECFCs) from peripheral blood and on human umbilical vein endothelial cells (HUVECs). METHODS AND RESULTS: Expression studies in primary human endothelial cells revealed that both vasohibin proteins,hVASH1A and hVASH1B,localized in the nucleus and cytoplasm. Adenoviruses carrying the cDNA for VASH1A/B and purified recombinant proteins were used to study the function of both molecules in ECFCs and HUVECs. Recombinant VASH1A protein did not inhibit cell proliferation,tube formation,or vessel growth in vivo in the chick chorioallantoic membrane (CAM) assay,but promoted endothelial cell migration in vitro. The VASH1B protein had an inhibitory effect on cell proliferation,migration,tube formation,and inhibited blood vessel formation in the CAM assay. Adenoviral overexpression of VASH1B,but not of VASH1A,resulted in inhibition of endothelial cell growth,migration,and capillary formation. Interestingly,overexpression of VASH1A and B induced apoptosis in proliferating human fibroblasts,but did not affect cell growth of keratinocytes. CONCLUSIONS: Our data point out that alternative splicing of the VASH1 pre-mRNA transcript generates a potent antiangiogenic protein.
View Publication
Wu X et al. (DEC 2008)
Blood 112 12 4675--82
Alternative splicing regulates activation-induced cytidine deaminase (AID): implications for suppression of AID mutagenic activity in normal and malignant B cells.
The mutagenic enzyme activation-induced cytidine deaminase (AID) is required for immunoglobulin class switch recombination (CSR) and somatic hypermutation (SHM) in germinal center (GC) B cells. Deregulated expression of AID is associated with various B-cell malignancies and,currently,it remains unclear how AID activity is extinguished to avoid illegitimate mutations. AID has also been shown to be alternatively spliced in malignant B cells,and there is limited evidence that this also occurs in normal blood B cells. The functional significance of these splice variants remains unknown. Here we show that normal GC human B cells and blood memory B cells similarly express AID splice variants and show for the first time that AID splicing variants are singly expressed in individual normal B cells as well as malignant B cells from chronic lymphocytic leukemia patients. We further demonstrate that the alternative AID splice variants display different activities ranging from inactivation of CSR to inactivation or heightened SHM activity. Our data therefore suggest that CSR and SHM are differentially switched off by varying the expression of splicing products of AID at the individual cell level. Most importantly,our findings suggest a novel tumor suppression mechanism by which unnecessary AID mutagenic activities are promptly contained for GC B cells.
View Publication
(Sep 2024)
Cells 13 19
Alternative Ways to Obtain Human Mesenchymal Stem Cells from Embryonic Stem Cells
Differentiation approaches to obtain mesenchymal stem cells (MSCs) have gradually developed over the last few decades. The problem is that different protocols give different MSC types,making further research difficult. Here,we tried three different approaches to differentiate embryonic stem cells (ESCs) from early mesoderm to MSCs using serum-containing or xeno-free differentiation medium and observed differences in the cells’ morphology,doubling rate,ability to form colonies,surface marker analysis,and multilineage differentiation potential of the obtained cell lines. We concluded that the xeno-free medium best fits the criteria of MSCs’ morphology,growth kinetics,and surface marker characterization. In contrast,the serum-containing medium gives better potential for further MSC differentiation into osteogenic,chondrogenic,and adipogenic lineages.
View Publication
L. M. Bedford et al. (Oct 2025)
Alzheimer's & Dementia 21 10
Alzheimer's disease–associated PLCG2 variants alter microglial state and function in human induced pluripotent stem cell–derived microglia‐like cells
Variants of phospholipase C gamma 2 (PLCG2),a key microglial immune signaling protein,are genetically linked to Alzheimer's disease (AD) risk. Understanding how PLCG2 variants alter microglial function is critical for identifying mechanisms that drive neurodegeneration or resiliency in AD. Induced pluripotent stem cell (iPSC) –derived microglia carrying the protective PLCG2 P522R or risk‐conferring PLCG2 M28L variants,or loss of PLCG2,were generated to ascertain the impact on microglial transcriptome and function. Protective PLCG2 P522R microglia showed significant transcriptomic similarity to isogenic controls. In contrast,risk‐conferring PLCG2 M28L microglia shared similarities with PLCG2 KO microglia,with functionally reduced TREM2 expression,blunted inflammatory responses,and increased proliferation and cell death. Uniquely,PLCG2 P522R microglia showed elevated cytokine secretion after lipopolysaccharide (LPS) stimulation and were protected from apoptosis. These findings demonstrate that PLCG2 variants drive distinct microglia transcriptomes that influence microglial functional responses that could contribute to AD risk and protection. Targeting PLCG2‐mediated signaling may represent a powerful therapeutic strategy to modulate neuroinflammation. The impact of Alzheimer's disease protective‐ and risk‐associated variants of phospholipase C gamma 2 (PLCG2) on the transcriptome and function of induced pluripotent stem cell (iPSC) –derived microglia was investigated. PLCG2 risk variant microglia exhibited a basal transcriptional profile similar to PLCG2‐deficient microglia but significantly different from isotype control and the transcriptionally similar PLCG2 protective variant microglia. PLCG2 risk variant and PLCG2‐deficient microglia show decreased levels of triggering receptor expressed on myeloid cells 2 (TREM2). The differential transcriptional pathways of protective and risk‐associated PLCG2 variant microglia functionally affect proliferation,apoptosis,and immune response. Protective PLCG2 microglia show resilience to apoptosis and increased cytokine/chemokine secretion upon exposure to lipopolysaccharide (LPS).
View Publication
Alzheimer’s disease (AD) is a devastating neurodegenerative condition that affects memory and cognition,characterized by neuronal loss and currently lacking a cure. Mutations in PSEN1 (Presenilin 1) are among the most common causes of early-onset familial AD (fAD). While changes in neuronal excitability are believed to be early indicators of AD progression,the link between PSEN1 mutations and neuronal excitability remains to be fully elucidated. This study examined iPSC-derived neurons (iNs) from fAD patients with PSEN1 mutations S290C or A246E,alongside CRISPR-corrected isogenic cell lines,to investigate early changes in excitability. Electrophysiological profiling revealed reduced excitability in both PSEN1 mutant iNs compared to their isogenic controls. Neurons bearing S290C and A246E mutations exhibited divergent passive membrane properties compared to isogenic controls,suggesting distinct effects of PSEN1 mutations on neuronal excitability. Additionally,both PSEN1 backgrounds exhibited higher current density of voltage-gated potassium (Kv) channels relative to their isogenic iNs,while displaying comparable voltage-gated sodium (Nav) channel current density. This suggests that the Nav/Kv imbalance contributes to impaired neuronal firing in fAD iNs. Deciphering these early cellular and molecular changes in AD is crucial for understanding disease pathogenesis.
View Publication
(Aug 2024)
medRxiv 388
Alzheimer’s disease protective allele of
SummaryGenome-wide association studies (GWAS) of Alzheimer’s disease (AD) have identified a plethora of risk loci. However,the disease variants/genes and the underlying mechanisms remain largely unknown. For a strong AD-associated locus near Clusterin (CLU),we tied an AD protective allele to a role of neuronal CLU in promoting neuron excitability through lipid-mediated neuron-glia communication. We identified a putative causal SNP of CLU that impacts neuron-specific chromatin accessibility to transcription-factor(s),with the AD protective allele upregulating neuronal CLU and promoting neuron excitability. Transcriptomic analysis and functional studies in induced pluripotent stem cell (iPSC)-derived neurons co-cultured with mouse astrocytes show that neuronal CLU facilitates neuron-to-glia lipid transfer and astrocytic lipid droplet formation coupled with reactive oxygen species (ROS) accumulation. These changes cause astrocytes to uptake less glutamate thereby altering neuron excitability. Our study provides insights into how CLU confers resilience to AD through neuron-glia interactions.
View Publication
Alzheimer’s disease protective allele of Clusterin modulates neuronal excitability through lipid-droplet-mediated neuron-glia communication
BackgroundGenome-wide association studies (GWAS) of Alzheimer’s disease (AD) have identified a plethora of risk loci. However,the disease variants/genes and the underlying mechanisms have not been extensively studied.MethodsBulk ATAC-seq was performed in induced pluripotent stem cells (iPSCs) differentiated various brain cell types to identify allele-specific open chromatin (ASoC) SNPs. CRISPR-Cas9 editing generated isogenic pairs,which were then differentiated into glutamatergic neurons (iGlut). Transcriptomic analysis and functional studies of iGlut co-cultured with mouse astrocytes assessed neuronal excitability and lipid droplet formation.ResultsWe identified a putative causal SNP of CLU that impacted neuronal chromatin accessibility to transcription-factor(s),with the AD protective allele upregulating neuronal CLU and promoting neuron excitability. And,neuronal CLU facilitated neuron-to-glia lipid transfer and astrocytic lipid droplet formation coupled with reactive oxygen species (ROS) accumulation. These changes caused astrocytes to uptake less glutamate thereby altering neuron excitability.ConclusionsFor a strong AD-associated locus near Clusterin (CLU),we connected an AD protective allele to a role of neuronal CLU in promoting neuron excitability through lipid-mediated neuron-glia communication. Our study provides insights into how CLU confers resilience to AD through neuron-glia interactions.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13024-025-00840-1.
View Publication
Gianní et al. ( 1996)
Blood 87 4 1520--1531
AM580, a stable benzoic derivative of retinoic acid, has powerful and selective cyto-differentiating effects on acute promyelocytic leukemia cells.
All-trans retinoic acid (ATRA) is successfully used in the cyto-differentiating treatment of acute promyelocytic leukemia (APL). Paradoxically,APL cells express PML-RAR,an aberrant form of the retinoic acid receptor type alpha (RAR alpha) derived from the leukemia-specific t(15;17) chromosomal translocation. We show here that AM580,a stable retinobenzoic derivative originally synthesized as a RAR alpha agonist,is a powerful inducer of granulocytic maturation in NB4,an APL-derived cell line,and in freshly isolated APL blasts. After treatment of APL cells with AM580 either alone or in combination with granulocyte colony-stimulating factor (G-CSF),the compound induces granulocytic maturation,as assessed by determination of the levels of leukocyte alkaline phosphatase,CD11b,CD33,and G-CSF receptor mRNA,at concentrations that are 10- to 100-fold lower than those of ATRA necessary to produce similar effects. By contrast,AM580 is not effective as ATRA in modulating the expression of these differentiation markers in the HL-60 cell line and in freshly isolated granulocytes obtained from the peripheral blood of chronic myelogenous leukemia patients during the stable phase of the disease. In NB4 cells,two other synthetic nonselective RAR ligands are capable of inducing LAP as much as AM580,whereas RAR beta- or RAR gamma-specific ligands are totally ineffective. These results show that AM580 is more powerful than ATRA in modulating the expression of differentiation antigens only in cells in which PML-RAR is present. Binding experiments,using COS-7 cells transiently transfected with PML-RAR and the normal RAR alpha,show that AM580 has a lower affinity than ATRA for both receptors. However,in the presence of PML-RAR,the synthetic retinoid is a much better transactivator of retinoic acid-responsive element-containing promoters than the natural retinoid,whereas,in the presence of RAR alpha,AM580 and ATRA have similar activity. This may explain the strong cyto-differentiating potential of AM580 in PML-RAR-containing leukemic cells.
View Publication
Zhao H et al. (JUN 2009)
Blood 113 23 5747--56
Amelioration of murine beta-thalassemia through drug selection of hematopoietic stem cells transduced with a lentiviral vector encoding both gamma-globin and the MGMT drug-resistance gene.
Correction of murine models of beta-thalassemia has been achieved through high-level globin lentiviral vector gene transfer into mouse hematopoietic stem cells (HSCs). However,transduction of human HSCs is less robust and may be inadequate to achieve therapeutic levels of genetically modified erythroid cells. We therefore developed a double gene lentiviral vector encoding both human gamma-globin under the transcriptional control of erythroid regulatory elements and methylguanine methyltransferase (MGMT),driven by a constitutive cellular promoter. MGMT expression provides cellular resistance to alkylator drugs,which can be administered to kill residual untransduced,diseased HSCs,whereas transduced cells are protected. Mice transplanted with beta-thalassemic HSCs transduced with a gamma-globin/MGMT vector initially had subtherapeutic levels of red cells expressing gamma-globin. To enrich gamma-globin-expressing cells,transplanted mice were treated with the alkylator agent 1,3-bis-chloroethyl-1-nitrosourea. This resulted in significant increases in the number of gamma-globin-expressing red cells and the amount of fetal hemoglobin,leading to resolution of anemia. Selection of transduced HSCs was also obtained when cells were drug-treated before transplantation. Mice that received these cells demonstrated reconstitution with therapeutic levels of gamma-globin-expressing cells. These data suggest that MGMT-based drug selection holds promise as a modality to improve gene therapy for beta-thalassemia.
View Publication