Mangalam AK et al. (JUN 2016)
Journal of immunology (Baltimore,Md. : 1950)
AMP-Activated Protein Kinase Suppresses Autoimmune Central Nervous System Disease by Regulating M1-Type Macrophage-Th17 Axis.
The AMP-activated protein kinase,AMPK,is an energy-sensing,metabolic switch implicated in various metabolic disorders; however,its role in inflammation is not well defined. We have previously shown that loss of AMPK exacerbates experimental autoimmune encephalomyelitis (EAE) disease severity. In this study,we investigated the mechanism through which AMPK modulates inflammatory disease like EAE. AMPKα1 knockout (α1KO) mice with EAE showed severe demyelination and inflammation in the brain and spinal cord compared with wild-type due to higher expression of proinflammatory Th17 cytokines,including IL-17,IL-23,and IL-1β,impaired blood-brain barrier integrity,and increased infiltration of inflammatory cells in the CNS. Infiltrated CD4 cells in the brains and spinal cords of α1KO with EAE were significantly higher compared with wild-type EAE and were characterized as IL-17 (IL-17 and GM-CSF double-positive) CD4 cells. Increased inflammatory response in α1KO mice was due to polarization of macrophages (Mϕ) to proinflammatory M1 type phenotype (IL-10(low)IL-23/IL-1β/IL-6(high)),and these M1 Mϕ showed stronger capacity to induce allogenic as well as Ag-specific (myelin oligodendrocyte glycoprotein [MOG]35-55) T cell response. Mϕ from α1KO mice also enhanced the encephalitogenic property of MOG35-55-primed CD4 T cells in B6 mice. The increased encephalitogenic MOG-restricted CD4(+) T cells were due to an autocrine effect of IL-1β/IL-23-mediated induction of IL-6 production in α1KO Mϕ,which in turn induce IL-17 and GM-CSF production in CD4 cells. Collectively,our data indicate that AMPK controls the inflammatory disease by regulating the M1 phenotype-Th17 axis in an animal model of multiple sclerosis.
View Publication
Schitine C et al. (JUN 2012)
The European journal of neuroscience 35 11 1672--83
Ampakine CX546 increases proliferation and neuronal differentiation in subventricular zone stem/progenitor cell cultures.
Ampakines are chemical compounds known to modulate the properties of ionotropic α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA)-subtype glutamate receptors. The functional effects attributed to ampakines involve plasticity and the increase in synaptic efficiency of neuronal circuits,a process that may be intimately associated with differentiation of newborn neurons. The subventricular zone (SVZ) is the main neurogenic niche of the brain,containing neural stem cells with brain repair potential. Accordingly,the identification of new pharmaceutical compounds with neurogenesis-enhancing properties is important as a tool to promote neuronal replacement based on the use of SVZ cells. The purpose of the present paper is to examine the possible proneurogenic effects of ampakine CX546 in cell cultures derived from the SVZ of early postnatal mice. We observed that CX546 (50 μm) treatment triggered an increase in proliferation,evaluated by BrdU incorporation assay,in the neuroblast lineage. Moreover,by using a cell viability assay (TUNEL) we found that,in contrast to AMPA,CX546 did not cause cell death. Also,both AMPA and CX546 stimulated neuronal differentiation as evaluated morphologically through neuronal nuclear protein (NeuN) immunocytochemistry and functionally by single-cell calcium imaging. Accordingly,short exposure to CX546 increased axonogenesis,as determined by the number and length of tau-positive axons co-labelled for the phosphorylated form of SAPK/JNK (P-JNK),and dendritogenesis (MAP2-positive neurites). Altogether,this study shows that ampakine CX546 promotes neurogenesis in SVZ cell cultures and thereby may have potential for future stem cell-based therapies.
View Publication
Akizu N et al. (AUG 2013)
Cell 154 3 505--517
AMPD2 Regulates GTP Synthesis and Is Mutated in a Potentially Treatable Neurodegenerative Brainstem Disorder
Purine biosynthesis and metabolism,conserved in all living organisms,is essential for cellular energy homeostasis and nucleic acid synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenosine and guanine nucleotides. We describe a distinct early-onset neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH) due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation,which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a potentially treatable early-onset neurodegenerative disease. ?? 2013 Elsevier Inc.
View Publication
Rebel VI et al. (JAN 1994)
Blood 83 1 128--36
Amplification of Sca-1+ Lin- WGA+ cells in serum-free cultures containing steel factor, interleukin-6, and erythropoietin with maintenance of cells with long-term in vivo reconstituting potential.
Normal murine bone marrow (BM) cells were sorted on the basis of low forward and orthogonal light scatter properties,Sca-1 expression (Sca-1+),lack of staining with a cocktail of mature hematopoietic lineage markers (Lin-),and binding of wheat germ agglutinin (WGA+). This approach allowed the reproducible isolation of a very small subpopulation (0.037% +/- 0.023% of all nucleated BM cells) that was approximately 400-fold enriched in cells capable of reconstituting both lymphoid and myeloid lineages in lethally irradiated recipients. Transplantation of 30 or 10 of these Sca-1+Lin-WGA+ cells resulted in textgreater or = to 20% donor-derived nucleated peripheral blood cells 3 months posttransplantation in 100% and 22% of the recipients,respectively. When Sca-1+Lin-WGA+ cells were cultured in serum-free medium supplemented with Steel factor,interleukin-6 (IL-6),and erythropoietin (with or without IL-3),a large increase in total cell number,including cells with an Sca-1+Lin-WGA+ phenotype was observed. Single cell cultures showed that 90% to 95% of the input cells underwent at least one division during the first 2 weeks and the remainder died. Interestingly,this proliferative response was not accompanied by a parallel increase in the number of cells with both lymphoid and myeloid repopulating potential in vivo,as quantitation of these by limiting dilution analysis showed they had decreased slightly (1.3-fold) but not significantly below the number initially present. These results demonstrate that Sca-1+Lin-WGA+ cells with long-term repopulating potential can be maintained for 2 weeks in a serum- and stroma cell-free culture,providing a simple in vitro system to study their behavior under well-defined conditions. The observed expansion of Sca-1+Lin-WGA+ cells in vitro without a concomitant increase in reconstituting cells also shows that extensive functional heterogeneity exists within populations of cells with this surface phenotype.
View Publication
Porayette P et al. (DEC 2007)
Biochemical and biophysical research communications 364 3 522--527
Amyloid-?? precursor protein expression and modulation in human embryonic stem cells: A novel role for human chorionic gonadotropin
The amyloid-beta precursor protein (AbetaPP) is a ubiquitously expressed adhesion and neuritogenic protein whose processing has previously been shown to be regulated by reproductive hormones including the gonadotropin luteinizing hormone (LH) in human neuroblastoma cells. We report for the first time the expression of AbetaPP in human embryonic stem (hES) cells at the mRNA and protein levels. Using N- and C-terminal antibodies against AbetaPP,we detected both the mature and immature forms of AbetaPP as well as truncated variants ( approximately 53kDa,47kDa,and 29kDa) by immunoblot analyses. Expression of AbetaPP is regulated by both the stemness of the cells and pregnancy-associated hormones. Addition of human chorionic gonadotropin,the fetal equivalent of LH that is dramatically elevated during pregnancy,markedly increased the expression of all AbetaPP forms. These results indicate a critical molecular signaling link between the hormonal environment of pregnancy and the expression of AbetaPP in hES cells that is suggestive of an important function for this protein during early human embryogenesis prior to the formation of neural precursor cells.
View Publication
K. Juul-Madsen et al. (Feb 2024)
Nature Communications 15
Amyloid-β aggregates activate peripheral monocytes in mild cognitive impairment
The peripheral immune system is important in neurodegenerative diseases,both in protecting and inflaming the brain,but the underlying mechanisms remain elusive. Alzheimer’s Disease is commonly preceded by a prodromal period. Here,we report the presence of large Aβ aggregates in plasma from patients with mild cognitive impairment ( n = 38). The aggregates are associated with low level Alzheimer’s Disease-like brain pathology as observed by 11 C-PiB PET and 18 F-FTP PET and lowered CD18-rich monocytes. We characterize complement receptor 4 as a strong binder of amyloids and show Aβ aggregates are preferentially phagocytosed and stimulate lysosomal activity through this receptor in stem cell-derived microglia. KIM127 integrin activation in monocytes promotes size selective phagocytosis of Aβ. Hydrodynamic calculations suggest Aβ aggregates associate with vessel walls of the cortical capillaries. In turn,we hypothesize aggregates may provide an adhesion substrate for recruiting CD18-rich monocytes into the cortex. Our results support a role for complement receptor 4 in regulating amyloid homeostasis. Subject terms: Protein aggregation,Neuroimmunology,Dementia
View Publication
Sacino AN et al. (MAY 2014)
Acta Neuropathologica 127 5 645--665
Amyloidogenic α-synuclein seeds do not invariably induce rapid, widespread pathology in mice
In order to further evaluate the parameters whereby intracerebral administration of recombinant α-synuclein (αS) induces pathological phenotypes in mice,we conducted a series of studies where αS fibrils were injected into the brains of M83 (A53T) and M47 (E46K) αS transgenic (Tg) mice,and non-transgenic (nTg) mice. Using multiple markers to assess αS inclusion formation,we find that injected fibrillar human αS induced widespread cerebral αS inclusion formation in the M83 Tg mice,but in both nTg and M47 Tg mice,induced αS inclusion pathology is largely restricted to the site of injection. Furthermore,mouse αS fibrils injected into nTg mice brains also resulted in inclusion pathology restricted to the site of injection with no evidence for spread. We find no compelling evidence for extensive spread of αS pathology within white matter tracts,and we attribute previous reports of white matter tract spreading to cross-reactivity of the αS pSer129/81A antibody with phosphorylated neurofilament subunit L. These studies suggest that,with the exception of the M83 Tg mice which appear to be uniquely susceptible to induction of inclusion pathology by exogenous forms of αS,there are significant barriers in mice to widespread induction of αS pathology following intracerebral administration of amyloidogenic αS.
View Publication
M. Bézard et al. (Feb 2025)
Scientific Reports 15 6
Amyloidogenic immunoglobulin light chains disturb contractile function and calcium transients in a human cardiac spheroid model of light chain (AL) amyloidosis
Light chain (AL) amyloidosis is a serious systemic disease caused by the deposition of free misfolded immunoglobulin light chains (LCs) in the form of amyloid fibrils within tissues. Cardiac involvement determines prognosis and mortality. An important cytotoxic impact of amyloidogenic prefibrillar LC oligomers on cardiomyocytes is by now established in isolated rodent cardiomyocytes,simple animal models,or cardiomyocyte-like cell lines. However,the response of human cardiomyocytes to this pathogenic condition is currently unknown. In this work,we have set up a human cellular disease model of AL cardiac amyloidosis (AL-CA) in the form of cardiac spheroids,to study the cytotoxic effects of amyloidogenic LCs with regard to contractile function and calcium handling. To mimic the disease in a reconstituted system,soluble amyloidogenic LCs purified from urine of AL-CA patients were added to a mixture of induced pluripotent stem cell-issued human cardiomyocytes (hiPSC-CM) and human primary cardiac fibroblasts,which resulted in formation of spheroids within 7 days. This procedure ensured a uniform pericellular LC distribution within spheroids. LC-treated hiPSC-CM cultures and LC-containing spheroids presented structural and functional defects including: (1) decreased levels and subcellular disorganization of sarcomeric protein alpha-actinin; (2) abnormal accumulation of calcium handling SERCA2a protein; (3) impaired contractility of spheroids and altered calcium transients. Three independent patient-derived LCs had similar effects,albeit to varying degrees,highlighting the patient-specific properties of this type of amyloids. Taken together,these results indicate that the present cardiac spheroid disease model could be appropriate to the study of cardiac cytotoxicity caused by different amyloidogenic LCs in AL-CA patients,contributing to a better understanding and therapeutic handling of the disease. The online version contains supplementary material available at 10.1038/s41598-024-82442-3.
View Publication
Massumi M et al. ( 2016)
PloS one 11 10 e0164457
An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells.
The ability to yield glucose-responsive pancreatic beta-cells from human pluripotent stem cells in vitro will facilitate the development of the cell replacement therapies for the treatment of Type 1 Diabetes. Here,through the sequential in vitro targeting of selected signaling pathways,we have developed an abbreviated five-stage protocol (25-30 days) to generate human Embryonic Stem Cell-Derived Beta-like Cells (ES-DBCs). We showed that Geltrex,as an extracellular matrix,could support the generation of ES-DBCs more efficiently than that of the previously described culture systems. The activation of FGF and Retinoic Acid along with the inhibition of BMP,SHH and TGF-beta led to the generation of 75% NKX6.1+/NGN3+ Endocrine Progenitors. The inhibition of Notch and tyrosine kinase receptor AXL,and the treatment with Exendin-4 and T3 in the final stage resulted in 35% mono-hormonal insulin positive cells,1% insulin and glucagon positive cells and 30% insulin and NKX6.1 co-expressing cells. Functionally,ES-DBCs were responsive to high glucose in static incubation and perifusion studies,and could secrete insulin in response to successive glucose stimulations. Mitochondrial metabolic flux analyses using Seahorse demonstrated that the ES-DBCs could efficiently metabolize glucose and generate intracellular signals to trigger insulin secretion. In conclusion,targeting selected signaling pathways for 25-30 days was sufficient to generate ES-DBCs in vitro. The ability of ES-DBCs to secrete insulin in response to glucose renders them a promising model for the in vitro screening of drugs,small molecules or genes that may have potential to influence beta-cell function.
View Publication
K. M. Hanson and J. N. Finkelstein (1 2019)
Analytical Biochemistry 564-565 96-101
An accessible and high-throughput strategy of continuously monitoring apoptosis by fluorescent detection of caspase activation
We present a real-time,high-throughput,and cost-effective method of detecting apoptosis in vitro using a previously developed reagent that detects caspase activation by fluorescence. Current methods of assessing apoptosis fail to account for the dimension of time,and thus are limited in data yielded per sample. This reagent allows real-time detection of apoptosis,but until now has been restricted to a costly automated detection system. Here,we describe apoptosis detection with the Essen Bioscience IncuCyte Caspase-3/7 Reagent using a multimode microplate reader,a common instrument in biological laboratories,which may be used prior to or in lieu of the automated system. This modified microplate reader apoptosis assay was validated against the established automated system,and was shown to detect a strong dose-response relationship (automated system r2 = 0.9968,microplate reader r2 = 0.9924). We also propose a quick and reliable method of quantifying cell density by Hoechst 33342 nuclear staining in microplates (r2 = 0.8812 between Hoechst signal and cell density). We assert that the dimension of time should not be overlooked,and that the method presented here is an accessible strategy for many researchers due to low startup cost and precise detection of apoptosis in real time.
View Publication
Haddad EA et al. (SEP 2009)
Journal of immunology (Baltimore,Md. : 1950) 183 6 3608--15
An accessory role for B cells in the IL-12-induced activation of resting mouse NK cells.
IL-12 is a potent proinflammatory cytokine. The effects of IL-12 are thought to be mediated by IFN-gamma production by NK,NKT,and T cells. In this study,we show that although IL-12 stimulates NK and NK1.1(+) T cells in bulk mouse splenocytes,it does not significantly stimulate purified NK cells,indicating that other cells are required. IL-12 stimulates T cell-deficient spleen cells and those depleted of macrophages. Unexpectedly,the depletion of dendritic cells also has little effect on the stimulation of spleen cells with IL-12. In contrast,B cell depletion almost completely inhibits IL-12-induced IFN-gamma production and B cell-deficient spleen cells are poorly stimulated with IL-12. Furthermore,purified NK cells are stimulated with IL-12 in the presence of purified B cells. Thus,B cells are necessary and also sufficient for the stimulation of purified NK cells with IL-12. Whereas spleen cells from IL-18-deficient mice are not stimulated with IL-12,NK cells purified from IL-18-deficient mice are stimulated with IL-12 in the presence of wild-type (WT) B cells,and WT NK cells are not stimulated with IL-12 in the presence of IL-18-deficient B cells. Cell contact between B and NK cells is also required for IL-12-induced IFN-gamma production. Finally,B cell-deficient mice injected with IL-12 produce significantly less IFN-gamma and IL-18 in the sera than WT mice do. Thus,stimulation of NK cells with IL-12 requires B cell cooperation in vitro as well as in vivo.
View Publication
Dorion et al. (Apr 2024)
Molecular Neurodegeneration 19 1
An adapted protocol to derive microglia from stem cells and its application in the study of CSF1R-related disorders
Induced pluripotent stem cell-derived microglia (iMGL) represent an excellent tool in studying microglial function in health and disease. Yet,since differentiation and survival of iMGL are highly reliant on colony-stimulating factor 1 receptor (CSF1R) signaling,it is difficult to use iMGL to study microglial dysfunction associated with pathogenic defects in CSF1R. Serial modifications to an existing iMGL protocol were made,including but not limited to changes in growth factor combination to drive microglial differentiation,until successful derivation of microglia-like cells from an adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) patient carrying a c.2350G > A (p.V784M) CSF1R variant. Using healthy control lines,the quality of the new iMGL protocol was validated through cell yield assessment,measurement of microglia marker expression,transcriptomic comparison to primary microglia,and evaluation of inflammatory and phagocytic activities. Similarly,molecular and functional characterization of the ALSP patient-derived iMGL was carried out in comparison to healthy control iMGL. The newly devised protocol allowed the generation of iMGL with enhanced transcriptomic similarity to cultured primary human microglia and with higher scavenging and inflammatory competence at ~ threefold greater yield compared to the original protocol. Using this protocol,decreased CSF1R autophosphorylation and cell surface expression was observed in iMGL derived from the ALSP patient compared to those derived from healthy controls. Additionally,ALSP patient-derived iMGL presented a migratory defect accompanying a temporal reduction in purinergic receptor P2Y12 ( P2RY12 ) expression,a heightened capacity to internalize myelin,as well as heightened inflammatory response to Pam 3 CSK 4 . Poor P2RY12 expression was confirmed to be a consequence of CSF1R haploinsufficiency,as this feature was also observed following CSF1R knockdown or inhibition in mature control iMGL,and in CSF1R WT/KO and CSF1R WT/E633K iMGL compared to their respective isogenic controls. We optimized a pre-existing iMGL protocol,generating a powerful tool to study microglial involvement in human neurological diseases. Using the optimized protocol,we have generated for the first time iMGL from an ALSP patient carrying a pathogenic CSF1R variant,with preliminary characterization pointing toward functional alterations in migratory,phagocytic and inflammatory activities. The online version contains supplementary material available at 10.1186/s13024-024-00723-x.
View Publication