M. D. Hu et al. (JUL 2018)
Journal of immunology (Baltimore,Md. : 1950) 201 2 747--756
Epithelial IL-15 Is a Critical Regulator of gamma$delta$ Intraepithelial Lymphocyte Motility within the Intestinal Mucosa.
Intraepithelial lymphocytes (IELs) expressing the gamma$delta$ TCR (gamma$delta$ IELs) provide continuous surveillance of the intestinal epithelium. However,the mechanisms regulating the basal motility of these cells within the epithelial compartment have not been well defined. We investigated whether IL-15 contributes to gamma$delta$ IEL localization and migratory behavior in addition to its role in IEL differentiation and survival. Using advanced live cell imaging techniques in mice,we find that compartmentalized overexpression of IL-15 in the lamina propria shifts the distribution of gamma$delta$ T cells from the epithelial compartment to the lamina propria. This mislocalization could be rescued by epithelial IL-15 overexpression,indicating that epithelial IL-15 is essential for gamma$delta$ IEL migration into the epithelium. Furthermore,in vitro analyses demonstrated that exogenous IL-15 stimulates gamma$delta$ IEL migration into cultured epithelial monolayers,and inhibition of IL-2Rbeta$ significantly attenuates the basal motility of these cells. Intravital microscopy showed that impaired IL-2Rbeta$ signaling induced gamma$delta$ IEL idling within the lateral intercellular space,which resulted in increased early pathogen invasion. Similarly,the redistribution of gamma$delta$ T cells to the lamina propria due to local IL-15 overproduction also enhanced bacterial translocation. These findings thus reveal a novel role for IL-15 in mediating gamma$delta$ T cell localization within the intestinal mucosa and regulating gamma$delta$ IEL motility and patrolling behavior as a critical component of host defense.
View Publication
Reference
E. Hangen et al. (JUL 2018)
Cell reports 24 4 1001--1012.e3
Neuronal Activity and Intracellular Calcium Levels Regulate Intracellular Transport of Newly Synthesized AMPAR.
Regulation of AMPA receptor (AMPAR) trafficking is a key modulator of excitatory synaptic transmission; however,intracellular vesicular transport of newly synthesized AMPARs has been little studied due to technical limitations. By combining molecular tools with imaging strategies in cultured rat hippocampal neurons,we found that vesicles containing newly synthesized,GluA1-subunit-containing AMPARs are transported antero- and retrogradely at a mean speed of 1.5 mu$m.s-1. Synaptic activity and variations in intracellular calcium levels bidirectionally modulate GluA1 transport. Chemical long-term potentiation (cLTP) initially induces a halt in GluA1 transport,followed by a sustained increase,while acute glutamate uncaging on synaptic spines arrests vesicular movements. GluA1 phosphomimetic mutants preferentially travel to the dendritic tip,probably to replenish extrasynaptic pools,distal to the soma. Our findings indicate that AMPAR intracellular transport is highly regulated during synaptic plasticity and likely controls AMPAR numbers at the plasma membrane.
View Publication
Reference
O. V. Halaidych et al. (MAY 2018)
Stem cell reports 10 5 1642--1656
Inflammatory Responses and Barrier Function of Endothelial Cells Derived from Human Induced Pluripotent Stem Cells.
Several studies have reported endothelial cell (EC) derivation from human induced pluripotent stem cells (hiPSCs). However,few have explored their functional properties in depth with respect to line-to-line and batch-to-batch variability and how they relate to primary ECs. We therefore carried out accurate characterization of hiPSC-derived ECs (hiPSC-ECs) from multiple (non-integrating) hiPSC lines and compared them with primary ECs in various functional assays,which included barrier function using real-time impedance spectroscopy with an integrated assay of electric wound healing,endothelia-leukocyte interaction under physiological flow to mimic inflammation and angiogenic responses in in vitro and in vivo assays. Overall,we found many similarities but also some important differences between hiPSC-derived and primary ECs. Assessment of vasculogenic responses in vivo showed little difference between primary ECs and hiPSC-ECs with regard to functional blood vessel formation,which may be important in future regenerative medicine applications requiring vascularization.
View Publication
Reference
D. M. Habiel et al. (APR 2018)
The American journal of pathology 188 4 891--903
Modeling Idiopathic Pulmonary Fibrosis in Humanized Severe Combined Immunodeficient Mice.
Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung disease of unknown etiopathogenesis with limited therapeutic options. IPF is characterized by an abundance of fibroblasts and loss of epithelial progenitors,which cumulates in unrelenting fibrotic lung remodeling and loss of normal oxygenation. IPF has been challenging to model in rodents; nonetheless,mouse models of lung fibrosis provide clues as to the natural progression of lung injury and remodeling,but many have not been useful in predicting efficacy of therapeutics in clinical IPF. We provide a detailed methodologic description of various iterations of humanized mouse models,initiated by the i.v. injection of cells from IPF lung biopsy or explants specimens into severe combined immunodeficiency (SCID)/beige or nonobese diabetic SCID gamma$ mice. Unlike cells from normal lung samples,IPF cells promote persistent,nonresolving lung remodeling in SCID mice. Finally,we provide examples and discuss potential advantages and pitfalls of human-specific targeting approaches in a humanized SCID model of pulmonary fibrosis.
View Publication
Reference
E. C. Guinan et al. ( 2016)
American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 16 7 2187--95
Ex Vivo Costimulatory Blockade to Generate Regulatory T Cells From Patients Awaiting Kidney Transplantation.
Short-term outcomes of kidney transplantation have improved dramatically,but chronic rejection and regimen-related toxicity continue to compromise overall patient outcomes. Development of regulatory T cells (Tregs) as a means to decrease alloresponsiveness and limit the need for pharmacologic immunosuppression is an active area of preclinical and clinical investigation. Nevertheless,the immunomodulatory effects of end-stage renal disease on the efficacy of various strategies to generate and expand recipient Tregs for kidney transplantation are incompletely characterized. In this study,we show that Tregs can be successfully generated from either freshly isolated or previously cryopreserved uremic recipient (responder) and healthy donor (stimulator) peripheral blood mononuclear cells using the strategy of ex vivo costimulatory blockade with belatacept during mixed lymphocyte culture. Moreover,these Tregs maintain a CD3(+) CD4(+) CD25(+) CD127(lo) surface phenotype,high levels of intracellular FOXP3 and significant demethylation of the FOXP3 Treg-specific demethylation region on allorestimulation with donor stimulator cells. These data support evaluation of this simple,brief Treg production strategy in clinical trials of mismatched kidney transplantation.
View Publication
Reference
J. C. Grima et al. (APR 2017)
Neuron 94 1 93--107.e6
Mutant Huntingtin Disrupts the Nuclear Pore Complex.
Huntington's disease (HD) is caused by an expanded CAG repeat in the Huntingtin (HTT) gene. The mechanism(s) by which mutant HTT (mHTT) causes disease is unclear. Nucleocytoplasmic transport,the trafficking of macromolecules between the nucleus and cytoplasm,is tightly regulated by nuclear pore complexes (NPCs) made up of nucleoporins (NUPs). Previous studies offered clues that mHTT may disrupt nucleocytoplasmic transport and a mutation of an NUP can cause HD-like pathology. Therefore,we evaluated the NPC and nucleocytoplasmic transport in multiple models of HD,including mouse and fly models,neurons transfected with mHTT,HD iPSC-derived neurons,and human HD brain regions. These studies revealed severe mislocalization and aggregation of NUPs and defective nucleocytoplasmic transport. HD repeat-associated non-ATG (RAN) translation proteins also disrupted nucleocytoplasmic transport. Additionally,overexpression of NUPs and treatment with drugs that prevent aberrant NUP biology also mitigated this transport defect and neurotoxicity,providing future novel therapy targets.
View Publication
Reference
M. A. Gregory et al. ( 2016)
Proceedings of the National Academy of Sciences of the United States of America 113 43 E6669--E6678
Activating mutations in FMS-like tyrosine kinase 3 (FLT3) are common in acute myeloid leukemia (AML) and drive leukemic cell growth and survival. Although FLT3 inhibitors have shown considerable promise for the treatment of AML,they ultimately fail to achieve long-term remissions as monotherapy. To identify genetic targets that can sensitize AML cells to killing by FLT3 inhibitors,we performed a genome-wide RNA interference (RNAi)-based screen that identified ATM (ataxia telangiectasia mutated) as being synthetic lethal with FLT3 inhibitor therapy. We found that inactivating ATM or its downstream effector glucose 6-phosphate dehydrogenase (G6PD) sensitizes AML cells to FLT3 inhibitor induced apoptosis. Examination of the cellular metabolome showed that FLT3 inhibition by itself causes profound alterations in central carbon metabolism,resulting in impaired production of the antioxidant factor glutathione,which was further impaired by ATM or G6PD inactivation. Moreover,FLT3 inhibition elicited severe mitochondrial oxidative stress that is causative in apoptosis and is exacerbated by ATM/G6PD inhibition. The use of an agent that intensifies mitochondrial oxidative stress in combination with a FLT3 inhibitor augmented elimination of AML cells in vitro and in vivo,revealing a therapeutic strategy for the improved treatment of FLT3 mutated AML.
View Publication
Reference
D. M. Gravano et al. (DEC 2016)
Journal of autoimmunity 75 58--67
CD8+ T cells drive autoimmune hematopoietic stem cell dysfunction and bone marrow failure.
Bone marrow (BM) failure syndrome encompasses a group of disorders characterized by BM stem cell dysfunction,resulting in varying degrees of hypoplasia and blood pancytopenia,and in many patients is autoimmune and inflammatory in nature. The important role of T helper 1 (Th1) polarized CD4+ T cells in driving BM failure has been clearly established in several models. However,animal model data demonstrating a functional role for CD8+ T cells in BM dysfunction is largely lacking and our objective was to test the hypothesis that CD8+ T cells play a non-redundant role in driving BM failure. Clinical evidence implicates a detrimental role for CD8+ T cells in BM failure and a beneficial role for Foxp3+ regulatory T cells (Tregs) in maintaining immune tolerance in the BM. We demonstrate that IL-2-deficient mice,which have a deficit in functional Tregs,develop spontaneous BM failure. Furthermore,we demonstrate a critical role for CD8+ T cells in the development of BM failure,which is dependent on the cytokine,IFNgamma$. CD8+ T cells promote hematopoietic stem cell dysfunction and depletion of myeloid lineage progenitor cells,resulting in anemia. Adoptive transfer experiments demonstrate that CD8+ T cells dramatically expedite disease progression and promote CD4+ T cell accumulation in the BM. Thus,BM dysregulation in IL-2-deficient mice is mediated by a Th1 and IFNgamma$-producing CD8+ T cell (Tc1) response.
View Publication
Reference
G. Goverse et al. ( 2017)
Journal of immunology 198 5 2172--2181
Diet-Derived Short Chain Fatty Acids Stimulate Intestinal Epithelial Cells To Induce Mucosal Tolerogenic Dendritic Cells.
The gastrointestinal tract is continuously exposed to many environmental factors that influence intestinal epithelial cells and the underlying mucosal immune system. In this article,we demonstrate that dietary fiber and short chain fatty acids (SCFAs) induced the expression of the vitamin A-converting enzyme RALDH1 in intestinal epithelial cells in vivo and in vitro,respectively. Furthermore,our data showed that the expression levels of RALDH1 in small intestinal epithelial cells correlated with the activity of vitamin A-converting enzymes in mesenteric lymph node dendritic cells,along with increased numbers of intestinal regulatory T cells and a higher production of luminal IgA. Moreover,we show that the consumption of dietary fiber can alter the composition of SCFA-producing microbiota and SCFA production in the small intestines. In conclusion,our data illustrate that dietary adjustments affect small intestinal epithelial cells and can be used to modulate the mucosal immune system.
View Publication
Reference
P. Gonzalez-Sanchez et al. ( 2017)
Frontiers in cellular neuroscience 11 363
Store-Operated Calcium Entry Is Required for mGluR-Dependent Long Term Depression in Cortical Neurons.
Store-operated calcium entry (SOCE) is a Calcium (Ca2+) influx pathway activated by depletion of intracellular stores that occurs in eukaryotic cells. In neurons,the presence and functions of SOCE are still in question. Here,we show evidences for the existence of SOCE in primary mouse cortical neurons. Endoplasmic reticulum (ER)-Ca2+ depletion using thapsigargin (Tg) triggered a maintained cytosolic Ca2+ increase,which rapidly returned to basal level in the presence of the SOCE blockers 2-Aminoethoxydiphenyl borate (2-APB) and YM-58483. Neural SOCE is also engaged by activation of metabotropic glutamate receptors (mGluRs) with (S)-3,5-dihydroxyphenylglycine (DHPG) (agonist of group I mGluRs),being an essential mechanism to maintain the mGluR-driven Ca2+ signal. Activation of group I of mGluRs triggers long-term depression (LTD) in many brain regions,but the underlying mechanism and,specifically,the necessity of Ca2+ increase in the postsynaptic neuron is controversial. In primary cortical neurons,we now show that the inhibition of Ca2+ influx through SOCE impaired DHPG-LTD,pointing out a key function of calcium and SOCE in synaptic plasticity.
View Publication
Reference
T. Girardi et al. (MAR 2018)
Leukemia 32 3 809--819
The T-cell leukemia-associated ribosomal RPL10 R98S mutation enhances JAK-STAT signaling.
Several somatic ribosome defects have recently been discovered in cancer,yet their oncogenic mechanisms remain poorly understood. Here we investigated the pathogenic role of the recurrent R98S mutation in ribosomal protein L10 (RPL10 R98S) found in T-cell acute lymphoblastic leukemia (T-ALL). The JAK-STAT signaling pathway is a critical controller of cellular proliferation and survival. A proteome screen revealed overexpression of several Jak-Stat signaling proteins in engineered RPL10 R98S mouse lymphoid cells,which we confirmed in hematopoietic cells from transgenic Rpl10 R98S mice and T-ALL xenograft samples. RPL10 R98S expressing cells displayed JAK-STAT pathway hyper-activation upon cytokine stimulation,as well as increased sensitivity to clinically used JAK-STAT inhibitors like pimozide. A mutually exclusive mutation pattern between RPL10 R98S and JAK-STAT mutations in T-ALL patients further suggests that RPL10 R98S functionally mimics JAK-STAT activation. Mechanistically,besides transcriptional changes,RPL10 R98S caused reduction of apparent programmed ribosomal frameshifting at several ribosomal frameshift signals in mouse and human Jak-Stat genes,as well as decreased Jak1 degradation. Of further medical interest,RPL10 R98S cells showed reduced proteasome activity and enhanced sensitivity to clinical proteasome inhibitors. Collectively,we describe modulation of the JAK-STAT cascade as a novel cancer-promoting activity of a ribosomal mutation,and expand the relevance of this cascade in leukemia.
View Publication
Reference
R. A. Gardner et al. ( 2017)
Blood 129 25 3322--3331
Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults.
Transitioning CD19-directed chimeric antigen receptor (CAR) T cells from early-phase trials in relapsed patients to a viable therapeutic approach with predictable efficacy and low toxicity for broad application among patients with high unmet need is currently complicated by product heterogeneity resulting from transduction of undefined T-cell mixtures,variability of transgene expression,and terminal differentiation of cells at the end of culture. A phase 1 trial of 45 children and young adults with relapsed or refractory B-lineage acute lymphoblastic leukemia was conducted using a CD19 CAR product of defined CD4/CD8 composition,uniform CAR expression,and limited effector differentiation. Products meeting all defined specifications occurred in 93{\%} of enrolled patients. The maximum tolerated dose was 106 CAR T cells per kg,and there were no deaths or instances of cerebral edema attributable to product toxicity. The overall intent-to-treat minimal residual disease-negative (MRD-) remission rate for this phase 1 study was 89{\%}. The MRD- remission rate was 93{\%} in patients who received a CAR T-cell product and 100{\%} in the subset of patients who received fludarabine and cyclophosphamide lymphodepletion. Twenty-three percent of patients developed reversible severe cytokine release syndrome and/or reversible severe neurotoxicity. These data demonstrate that manufacturing a defined-composition CD19 CAR T cell identifies an optimal cell dose with highly potent antitumor activity and a tolerable adverse effect profile in a cohort of patients with an otherwise poor prognosis. This trial was registered at www.clinicaltrials.gov as {\#}NCT02028455.
View Publication