Y. Fujimichi et al. (dec 2019)
Scientific reports 9 1 20297
An Efficient Intestinal Organoid System of Direct Sorting to Evaluate Stem Cell Competition in Vitro.
Stem cell competition could shed light on the tissue-based quality control mechanism that prevents carcinogenesis. To quantitatively evaluate stem cell competition in vitro,we developed a two-color intestinal organoid forming system. First,we improved a protocol of culturing organoids from intestinal leucine-rich-repeat containing G-protein-coupled receptor 5 (Lgr5)- enhanced green fluorescent protein (EGFP)high stem cells directly sorted on Matrigel without embedding. The organoid-forming potential (OFP) was 25{\%} of Lgr5-EGFPhigh cells sorted at one cell per well. Using this culture protocol with lineage tracing,we established a two-color organoid culture system by mixing stem cells expressing different fluorescent colors. To analyze stem cell competition,two-color organoids were formed by mixing X-ray-irradiated and non-irradiated intestinal stem cells. In the two-color organoids,irradiated stem cells exhibited a growth disadvantage,although the OFP of irradiated cells alone did not decrease significantly from that of non-irradiated cells. These results suggest that stem cell competition can be evaluated quantitively in vitro using our new system.
View Publication
Kö et al. (JUN 1998)
Bone marrow transplantation 21 Suppl 3 S48--53
An eight-fold ex vivo expansion of long-term culture-initiating cells from umbilical cord blood in stirred suspension cultures.
Simultaneous ex vivo expansion of different progenitor cell types may be beneficial for cord blood (CB) transplantation,to overcome a potential limitation due to restricted cell numbers. Therefore,1.5 x 10(6) CD34+ cells isolated from fresh or thawed CB samples were inoculated in a large-scale stirred suspension bioreactor and cultured in the presence of Flt3-L,SCF and IL-3. At days 0,7,10,14,21 and 28,the spinner cultures were analyzed for viable cells,colony-forming cells (CFC),including erythroid burst-forming unit (BFU-E),granulocyte-macrophage colony-forming unit (CFU-GM) and granulocyte-erythrocyte-megakaryocyte-monocyte colony-forming unit (CFU-GEMM) as well as long-term culture-initiating cells (LTC-IC). Expansion of thawed CD34+ cells resulted in a substantial amplification of total cells (maximal at day 28: 154 +/- 132-fold),CFC (maximal at day 14: 45 +/- 36-fold),CFU-GM (maximal at day 14: 88 +/- 85-fold),CFU-GEMM (maximal at day 7: 4 +/- 2-fold) and of LTC-IC (maximal at day 10: 8 +/- 3-fold). There was no significant difference between fresh and thawed CD34+ cells. These results demonstrate that simultaneously committed progenitors as well as the more immature CFU-GEMM and LTC-IC can be substantially amplified from CD34+-enriched CB samples in large-scale stirred suspension cultures within 7-14 days without exhausting the proliferative potential and,thus,it may be possible to improve CB transplantation by ex vivo generated cells.
View Publication
M. Dobersberger et al. (Mar 2024)
Cell Reports Methods 4 4
An engineering strategy to target activated EGFR with CAR T cells
Chimeric antigen receptor (CAR) T cells have shown remarkable response rates in hematological malignancies. In contrast,CAR T cell treatment of solid tumors is associated with several challenges,in particular the expression of most tumor-associated antigens at lower levels in vital organs,resulting in on-target/off-tumor toxicities. Thus,innovative approaches to improve the tumor specificity of CAR T cells are urgently needed. Based on the observation that many human solid tumors activate epidermal growth factor receptor (EGFR) on their surface through secretion of EGFR ligands,we developed an engineering strategy for CAR-binding domains specifically directed against the ligand-activated conformation of EGFR. We show,in several experimental systems,that the generated binding domains indeed enable CAR T cells to distinguish between active and inactive EGFR. We anticipate that this engineering concept will be an important step forward to improve the tumor specificity of CAR T cells directed against EGFR-positive solid cancers.
View Publication
Kordon EC and Smith GH (MAY 1998)
Development (Cambridge,England) 125 10 1921--30
An entire functional mammary gland may comprise the progeny from a single cell.
Any epithelial portion of a normal mouse mammary gland can reproduce an entire functional gland when transplanted into an epithelium-free mammary fat pad. Mouse mammary hyperplasias and tumors are clonal dominant populations and probably represent the progeny of a single transformed cell. Our study provides evidence that single multipotent stem cells positioned throughout the mature fully developed mammary gland have the capacity to produce sufficient differentiated progeny to recapitulate an entire functional gland. Our evidence also demonstrates that these stem cells are self-renewing and are found with undiminished capacities in the newly regenerated gland. We have taken advantage of an experimental model where mouse mammary tumor virus infects mammary epithelial cells and inserts a deoxyribonucleic acid copy(ies) of its genome during replication. The insertions occur randomly within the somatic genome. CzechII mice have no endogenous nucleic acid sequence homology with mouse mammary tumor virus; therefore all viral insertions may be detected by Southern analysis provided a sufficient number of cells contain a specific insertional event. Transplantation of random fragments of infected CzechII mammary gland produced clonal-dominant epithelial populations in epithelium-free mammary fat pads. Serial transplantation of pieces of the clonally derived outgrowths produced second generation glands possessing the same viral insertion sites providing evidence for self-renewal of the original stem cell. Limiting dilution studies with cell cultures derived from third generation clonal outgrowths demonstrated that three multipotent but distinct mammary epithelial progenitors were present in clonally derived mammary epithelial populations. Estimation of the potential number of multipotent epithelial cells that may be evolved from an individual mammary-specific stem cell by self-renewal is in the order of 10(12)-10(13). Therefore,one stem cell might easily account for the renewal of mammary epithelium over several transplant generations.
View Publication
(Jun 2024)
PLOS Genetics 20 6
An eQTL-based approach reveals candidate regulators of LINE-1 RNA levels in lymphoblastoid cells
Long interspersed element 1 (LINE-1; L1) are a family of transposons that occupy ~17% of the human genome. Though a small number of L1 copies remain capable of autonomous transposition,the overwhelming majority of copies are degenerate and immobile. Nevertheless,both mobile and immobile L1s can exert pleiotropic effects (promoting genome instability,inflammation,or cellular senescence) on their hosts,and L1’s contributions to aging and aging diseases is an area of active research. However,because of the cell type-specific nature of transposon control,the catalogue of L1 regulators remains incomplete. Here,we employ an eQTL approach leveraging transcriptomic and genomic data from the GEUVADIS and 1000Genomes projects to computationally identify new candidate regulators of L1 RNA levels in lymphoblastoid cell lines. To cement the role of candidate genes in L1 regulation,we experimentally modulate the levels of top candidates in vitro,including IL16,STARD5,HSD17B12,and RNF5,and assess changes in TE family expression by Gene Set Enrichment Analysis (GSEA). Remarkably,we observe subtle but widespread upregulation of TE family expression following IL16 and STARD5 overexpression. Moreover,a short-term 24-hour exposure to recombinant human IL16 was sufficient to transiently induce subtle,but widespread,upregulation of L1 subfamilies. Finally,we find that many L1 expression-associated genetic variants are co-associated with aging traits across genome-wide association study databases. Our results expand the catalogue of genes implicated in L1 RNA control and further suggest that L1-derived RNA contributes to aging processes. Given the ever-increasing availability of paired genomic and transcriptomic data,we anticipate this new approach to be a starting point for more comprehensive computational scans for regulators of transposon RNA levels. Author summaryTransposable elements,or jumping genes,are fragments of DNA that have or once had the ability to mobilize to a new location within our genome. In humans,the most abundant transposable element is LINE-1 (L1),accounting for ~17% of our total DNA. Though L1 is generally repressed in healthy human cells,derepression of transposable elements (including L1) has been observed in aging and in aging-associated diseases. Additionally,there is increasing evidence that L1 transcriptional levels may promote features of aging,highlighting the importance of understanding the mechanisms that regulate L1 RNA levels. Here,we computationally identify new candidate regulators of L1 RNA levels,provide experimental evidence that candidate regulators influence L1 RNA levels,and demonstrate that genetic variants associated with differences in L1 RNA levels are co-associated with aging phenotypes. Our approach expands the toolkit that can be used to characterize transposable element regulation and highlights specific genes for further study. Importantly,our results reiterate the notion that L1 levels are linked with aging phenotypes and represent a potential therapeutic target for age-related decline.
View Publication
Jiang BH et al. (NOV 1998)
Proceedings of the National Academy of Sciences of the United States of America 95 24 14179--83
An essential role of phosphatidylinositol 3-kinase in myogenic differentiation.
The oncogene p3k,coding for a constitutively active form of phosphatidylinositol 3-kinase (PI 3-kinase; EC 2.7.1.137),strongly enhances myogenic differentiation in cultures of chicken-embryo myoblasts. It increases the size of the myotubes and induces elevated levels of the muscle-specific proteins MyoD,myosin heavy chain,creatine kinase,and desmin. Inhibition of PI 3-kinase activity with LY294002 or with dominant-negative mutants of PI 3-kinase interferes with myogenic differentiation and with the induction of muscle-specific genes. PI 3-kinase is therefore an upstream mediator for the expression of the muscle-specific genes and is both necessary and rate-limiting for the process of myogenesis.
View Publication
M. Engelbrecht-Roberts et al. (Feb 2025)
Molecules 30 5
An Evaluation of the Potential Radiosensitization Effect of Spherical Gold Nanoparticles to Induce Cellular Damage Using Different Radiation Qualities
Global disparities in cancer prevention,detection,and treatment demand a unified international effort to reduce the disease’s burden and improve outcomes. Despite advances in chemotherapy and radiotherapy,many tumors remain resistant to these treatments. Gold nanoparticles (AuNPs) have shown promise as radiosensitizers,enhancing the effectiveness of low-energy X-rays by emitting Auger electrons that cause localized cellular damage. In this study,spherical AuNPs of 5 nm and 10 nm were characterized and tested on various cell lines,including malignant breast cells (MCF-7),non-malignant cells (CHO-K1 and MCF-10A),and human lymphocytes. Cells were treated with AuNPs and irradiated with attenuated 6 megavoltage (MV) X-rays or p(66)/Be neutron radiation to assess DNA double-strand break (DSB) damage,cell viability,and cell cycle progression. The combination of AuNPs and neutron radiation induced higher levels of γ-H2AX foci and micronucleus formation compared to treatments with AuNPs or X-ray radiation alone. AuNPs alone reduced cellular kinetics and increased the accumulation of cells in the G2/M phase,suggesting a block of cell cycle progression. For cell proliferation,significant effects were only observed at the concentration of 50 μg/mL of AuNPs,while lower concentrations had no inhibitory effect. Further research is needed to quantify internalized AuNPs and correlate their concentration with the observed cellular effects to unravel the biological mechanisms of their radioenhancement.
View Publication
(Sep 2024)
EMBO Reports 25 10
An hepatitis B and D virus infection model using human pluripotent stem cell-derived hepatocytes
Current culture systems available for studying hepatitis D virus (HDV) are suboptimal. In this study,we demonstrate that hepatocyte-like cells (HLCs) derived from human pluripotent stem cells (hPSCs) are fully permissive to HDV infection across various tested genotypes. When co-infected with the helper hepatitis B virus (HBV) or transduced to express the HBV envelope protein HBsAg,HLCs effectively release infectious progeny virions. We also show that HBsAg-expressing HLCs support the extracellular spread of HDV,thus providing a valuable platform for testing available anti-HDV regimens. By challenging the cells along the differentiation with HDV infection,we have identified CD63 as a potential HDV co-entry factor that was rate-limiting for HDV infection in immature hepatocytes. Given their renewable source and the potential to derive hPSCs from individual patients,we propose HLCs as a promising model for investigating HDV biology. Our findings offer new insights into HDV infection and expand the repertoire of research tools available for the development of therapeutic interventions. Synopsis
This study presents human pluripotent stem cell-derived hepatocyte-like cells (HLCs) as a culture system that expands the repertoire of research tools for studying hepatitis B and D viruses (HBV/HDV) and identifies CD63 as a potential HDV co-entry factor.
Co-infection with HBV or virus-mediated delivery of HBV surface proteins enables HDV to complete its life cycle in HLCs.Extracellular HDV spread in HLCs enables the evaluation of anti-HDV therapies.HDV permissiveness along HLC differentiation reveals CD63 as a novel co-factor of HDV cell entry. This study presents human pluripotent stem cell-derived hepatocyte-like cells (HLCs) as a culture system that expands the repertoire of research tools for studying hepatitis B and D viruses (HBV/HDV) and identifies CD63 as a potential HDV co-entry factor.
View Publication
(Jun 2025)
bioRxiv 365
An HIV-1 Reference Epitranscriptome
Post-transcriptional modifications to RNA,which comprise the epitranscriptome,play important roles in RNA metabolism,gene regulation,and human disease,including viral pathogenesis. Modifications to the RNA viral genome and transcripts of human immunodeficiency virus 1 (HIV-1) have been reported and investigated in the context of virus and host biology. However,the diversity of experimental approaches used has made clear correlations across studies,as well as the significance of the HIV-1 epitranscriptome in biology and disease,difficult to assess. Therefore,we established a reference HIV-1 epitranscriptome. We sequenced the model NL4–3 HIV-1 genome from infected primary CD4+ T cells and the Jurkat cell line using the latest nanopore chemistry,optimized RNA preparation methods,and the most current and readily available base-calling algorithms. A highly reproducible sense and a preliminary antisense HIV-1 epitranscriptome were created,where N6-methyladenosine (m6A),5-methylcytosine (m5C),pseudouridine (psi),inosine,and 2’-O-methyl (Nm) modifications could be identified by rapid multiplexed base-calling. We observed that sequence and neighboring modification contexts induced modification miscalling,which could be corrected with synthetic HIV-1 RNA fragments. We validated m6A modification sites with STM2457,a small molecule inhibitor of methyltransferase-like 3 (METTL3). We find that modifications are quite stable under combination antiretroviral therapy (cART) treatment,in primary CD4+ T cells,and in HIV-1 virions. Sequencing samples from people living with HIV (PLWH) revealed conservation of m6A modifications. However,analysis of spliced transcript variants suggests transcript-dependent modification levels. Our approach and reference data offer a straightforward benchmark that can be adopted to help advance rigor,reproducibility,and uniformity across HIV-1 epitranscriptomics studies. They also provide a roadmap for the creation of reference epitranscriptomes for many other viruses or pathogens.
View Publication
Hu J et al. (DEC 2006)
Journal of immunology (Baltimore,Md. : 1950) 177 11 8037--45
An HLA-A2.1-transgenic rabbit model to study immunity to papillomavirus infection.
We have established several HLA-A2.1-transgenic rabbit lines to provide a host to study CD8(+) T cell responses during virus infections. HLA-A2.1 protein expression was detected on cell surfaces within various organ tissues. Continuous cultured cells from these transgenic rabbits were capable of presenting both endogenous and exogenous HLA-A2.1-restricted epitopes to an HLA-A2.1-restricted epitope-specific CTL clone. A DNA vaccine containing an HLA-A2.1-restricted human papillomavirus type 16 E7 epitope (amino acid residues 82-90) stimulated epitope-specific CTLs in both PBLs and spleen cells of transgenic rabbits. In addition,vaccinated transgenic rabbits were protected against infection with a mutant cottontail rabbit papillomavirus DNA containing an embedded human papillomavirus type 16 E7/82-90 epitope. Complete protection was achieved using a multivalent epitope DNA vaccine based on epitope selection from cottontail rabbit papillomavirus E1 using MHC class I epitope prediction software. HLA-A2.1-transgenic rabbits will be an important preclinical animal model system to study virus-host interactions and to assess specific targets for immunotherapy.
View Publication
Lee SB et al. (JAN 2016)
Nature 529 7585 172--7
An ID2-dependent mechanism for VHL inactivation in cancer.
Mechanisms that maintain cancer stem cells are crucial to tumour progression. The ID2 protein supports cancer hallmarks including the cancer stem cell state. HIFα transcription factors,most notably HIF2α (also known as EPAS1),are expressed in and required for maintenance of cancer stem cells (CSCs). However,the pathways that are engaged by ID2 or drive HIF2α accumulation in CSCs have remained unclear. Here we report that DYRK1A and DYRK1B kinases phosphorylate ID2 on threonine 27 (Thr27). Hypoxia downregulates this phosphorylation via inactivation of DYRK1A and DYRK1B. The activity of these kinases is stimulated in normoxia by the oxygen-sensing prolyl hydroxylase PHD1 (also known as EGLN2). ID2 binds to the VHL ubiquitin ligase complex,displaces VHL-associated Cullin 2,and impairs HIF2α ubiquitylation and degradation. Phosphorylation of Thr27 of ID2 by DYRK1 blocks ID2-VHL interaction and preserves HIF2α ubiquitylation. In glioblastoma,ID2 positively modulates HIF2α activity. Conversely,elevated expression of DYRK1 phosphorylates Thr27 of ID2,leading to HIF2α destabilization,loss of glioma stemness,inhibition of tumour growth,and a more favourable outcome for patients with glioblastoma.
View Publication
K. Trakarnsanga et al. ( 2017)
Nature communications 8 14750
An immortalized adult human erythroid line facilitates sustainable and scalable generation of functional red cells.
With increasing worldwide demand for safe blood,there is much interest in generating red blood cells in vitro as an alternative clinical product. However,available methods for in vitro generation of red cells from adult and cord blood progenitors do not yet provide a sustainable supply,and current systems using pluripotent stem cells as progenitors do not generate viable red cells. We have taken an alternative approach,immortalizing early adult erythroblasts generating a stable line,which provides a continuous supply of red cells. The immortalized cells differentiate efficiently into mature,functional reticulocytes that can be isolated by filtration. Extensive characterization has not revealed any differences between these reticulocytes and in vitro-cultured adult reticulocytes functionally or at the molecular level,and importantly no aberrant protein expression. We demonstrate a feasible approach to the manufacture of red cells for clinical use from in vitro culture.
View Publication