E. Yi et al. (Apr 2025)
Respiratory Research 26 10131
An integrated machine learning model of transcriptomic genes in multi-center chronic obstructive pulmonary disease reveals the causal role of TIMP4 in airway epithelial cell
Chronic obstructive pulmonary disease (COPD) is a heterogeneous syndrome,resulting in inconsistent findings across studies. Identifying a core set of genes consistently involved in COPD pathogenesis,independent of patient variability,is essential. We integrated lung tissue sequencing data from patients with COPD across two centers. We used weighted gene co-expression network analysis and machine learning to identify 13 potential pathogenic genes common to both centers. Additionally,a gene-based model was constructed to distinguish COPD at the molecular level and validated in independent cohorts. Gene expression in specific cell types was analyzed,and Mendelian randomization was used to confirm associations between candidate genes and lung function/COPD. Preliminary in vitro functional validation was performed on prioritized core candidate genes. Tissue inhibitor of metalloproteinase 4 (TIMP4) was identified as a key pathogenic gene and validated in COPD cohorts. Further analysis using single-cell sequencing from mice and patients with COPD revealed that TIMP4 is involved in ciliated cells. In primary human airway epithelial cells cultured at the air-liquid interface,TIMP4 overexpression reduced ciliated cell numbers. We developed a 13-gene model for distinguishing COPD at the molecular level and identified TIMP4 as a potential hub pathogenic gene. This finding provides insights into shared disease mechanisms and positions TIMP4 as a promising therapeutic target for further investigation. The online version contains supplementary material available at 10.1186/s12931-025-03238-1.
View Publication
I. Haq et al. (Apr 2024)
Stem Cell Research & Therapy 15 6005
An integrated toolkit for human microglia functional genomics
Microglia,the brain’s resident immune cells,play vital roles in brain development,and disorders like Alzheimer’s disease (AD). Human iPSC-derived microglia (iMG) provide a promising model to study these processes. However,existing iMG generation protocols face challenges,such as prolonged differentiation time,lack of detailed characterization,and limited gene function investigation via CRISPR-Cas9. Our integrated toolkit for in-vitro microglia functional genomics optimizes iPSC differentiation into iMG through a streamlined two-step,20-day process,producing iMG with a normal karyotype. We confirmed the iMG’s authenticity and quality through single-cell RNA sequencing,chromatin accessibility profiles (ATAC-Seq),proteomics and functional tests. The toolkit also incorporates a drug-dependent CRISPR-ON/OFF system for temporally controlled gene expression. Further,we facilitate the use of multi-omic data by providing online searchable platform that compares new iMG profiles to human primary microglia: https://sherlab.shinyapps.io/IPSC-derived-Microglia/ . Our method generates iMG that closely align with human primary microglia in terms of transcriptomic,proteomic,and chromatin accessibility profiles. Functionally,these iMG exhibit Ca2 + transients,cytokine driven migration,immune responses to inflammatory signals,and active phagocytosis of CNS related substrates including synaptosomes,amyloid beta and myelin. Significantly,the toolkit facilitates repeated iMG harvesting,essential for large-scale experiments like CRISPR-Cas9 screens. The standalone ATAC-Seq profiles of our iMG closely resemble primary microglia,positioning them as ideal tools to study AD-associated single nucleotide variants (SNV) especially in the genome regulatory regions. Our advanced two-step protocol rapidly and efficiently produces authentic iMG. With features like the CRISPR-ON/OFF system and a comprehensive multi-omic data platform,our toolkit equips researchers for robust microglial functional genomic studies. By facilitating detailed SNV investigation and offering a sustainable cell harvest mechanism,the toolkit heralds significant progress in neurodegenerative disease drug research and therapeutic advancement. The online version contains supplementary material available at 10.1186/s13287-024-03700-9.
View Publication
Ting S et al. (SEP 2014)
Stem Cell Research 13 2 202--213
An intermittent rocking platform for integrated expansion and differentiation of human pluripotent stem cells to cardiomyocytes in suspended microcarrier cultures
The development of novel platforms for large scale production of human embryonic stem cells (hESC) derived cardiomyocytes (CM) becomes more crucial as the demand for CMs in preclinical trials,high throughput cardio toxicity assays and future regenerative therapeutics rises. To this end,we have designed a microcarrier (MC) suspension agitated platform that integrates pluripotent hESC expansion followed by CM differentiation in a continuous,homogenous process.Hydrodynamic shear stresses applied during the hESC expansion and CM differentiation steps drastically reduced the capability of the cells to differentiate into CMs. Applying vigorous stirring during pluripotent hESC expansion on Cytodex 1 MC in spinner cultures resulted in low CM yields in the following differentiation step (cardiac troponin-T (cTnT): 22.83. ??. 2.56%; myosin heavy chain (MHC): 19.30. ??. 5.31%). Whereas the lower shear experienced in side to side rocker (wave type) platform resulted in higher CM yields (cTNT: 47.50. ??. 7.35%; MHC: 42.85. ??. 2.64%). The efficiency of CM differentiation is also affected by the hydrodynamic shear stress applied during the first 3. days of the differentiation stage. Even low shear applied continuously by side to side rocker agitation resulted in very low CM differentiation efficiency (cTnT. textless. 5%; MHC. textless. 2%). Simply by applying intermittent agitation during these 3. days followed by continuous agitation for the subsequent 9. days,CM differentiation efficiency can be substantially increased (cTNT: 65.73. ??. 10.73%; MHC: 59.73. ??. 9.17%). These yields are 38.3% and 39.3% higher (for cTnT and MHC respectively) than static culture control.During the hESC expansion phase,cells grew on continuously agitated rocker platform as pluripotent cell/MC aggregates (166??88??105??m2) achieving a cell concentration of 3.74??0.55??106cells/mL (18.89??2.82 fold expansion) in 7days. These aggregates were further differentiated into CMs using a WNT modulation differentiation protocol for the subsequent 12days on a rocking platform with an intermittent agitation regime during the first 3days. Collectively,the integrated MC rocker platform produced 190.5??58.8??106 CMs per run (31.75??9.74 CM/hESC seeded). The robustness of the system was demonstrated by using 2 cells lines,hESC (HES-3) and human induced pluripotent stem cell (hiPSC) IMR-90. The CM/MC aggregates formed extensive sarcomeres that exhibited cross-striations confirming cardiac ontogeny. Functionality of the CMs was demonstrated by monitoring the effect of inotropic drug,Isoproterenol on beating frequency.In conclusion,we have developed a simple robust and scalable platform that integrates both hESC expansion and CM differentiation in one unit process which is capable of meeting the need for large amounts of CMs. ?? 2014.
View Publication
Wang Y et al. ( 2014)
Nature Communications 5 4432
An intestinal commensal symbiosis factor controls neuroinflammation via TLR2-mediated CD39 signalling
The mammalian immune system constitutively senses vast quantities of commensal bacteria and their products through pattern recognition receptors,yet excessive immune reactivity is prevented under homeostasis. The intestinal microbiome can influence host susceptibility to extra-intestinal autoimmune disorders. Here we report that polysaccharide A (PSA),a symbiosis factor for the human intestinal commensal Bacteroides fragilis,protects against central nervous system demyelination and inflammation during experimental autoimmune encephalomyelitis (EAE),an animal model for multiple sclerosis,through Toll-like receptor 2 (TLR2). TLR2 mediates tissue-specific expansion of a critical regulatory CD39(+) CD4 T-cell subset by PSA. Ablation of CD39 signalling abrogates PSA control of EAE manifestations and inflammatory cytokine responses. Further,CD39 confers immune-regulatory phenotypes to total CD4 T cells and Foxp3(+) CD4 Tregs. Importantly,CD39-deficient CD4 T cells show an enhanced capability to drive EAE progression. Our results demonstrate the therapeutic potential and underlying mechanism by which an intestinal symbiont product modulates CNS-targeted demyelination.
View Publication
Zeng H et al. (SEP 2016)
Cell stem cell 19 3 326--340
An Isogenic Human ESC Platform for Functional Evaluation of Genome-wide-Association-Study-Identified Diabetes Genes and Drug Discovery.
Genome-wide association studies (GWASs) have increased our knowledge of loci associated with a range of human diseases. However,applying such findings to elucidate pathophysiology and promote drug discovery remains challenging. Here,we created isogenic human ESCs (hESCs) with mutations in GWAS-identified susceptibility genes for type 2 diabetes. In pancreatic beta-like cells differentiated from these lines,we found that mutations in CDKAL1,KCNQ1,and KCNJ11 led to impaired glucose secretion in vitro and in vivo,coinciding with defective glucose homeostasis. CDKAL1 mutant insulin+ cells were also hypersensitive to glucolipotoxicity. A high-content chemical screen identified a candidate drug that rescued CDKAL1-specific defects in vitro and in vivo by inhibiting the FOS/JUN pathway. Our approach of a proof-of-principle platform,which uses isogenic hESCs for functional evaluation of GWAS-identified loci and identification of a drug candidate that rescues gene-specific defects,paves the way for precision therapy of metabolic diseases.
View Publication
Wang Y et al. (MAR 2017)
Mucosal immunology 10 2 373--384
An LGG-derived protein promotes IgA production through upregulation of APRIL expression in intestinal epithelial cells.
p40,a Lactobacillus rhamnosus GG (LGG)-derived protein,transactivates epidermal growth factor receptor (EGFR) in intestinal epithelial cells,leading to amelioration of intestinal injury and inflammation. To elucidate mechanisms by which p40 regulates mucosal immunity to prevent inflammation,this study aimed to determine the effects and mechanisms of p40 on regulation of a proliferation-inducing ligand (APRIL) expression in intestinal epithelial cells for promoting immunoglobulin A (IgA) production. p40 upregulated April gene expression and protein production in mouse small intestine epithelial (MSIE) cells,which were inhibited by blocking EGFR expression and kinase activity. Enteroids from Egfr(fl/fl),but not Egfr(fl/fl)-Vil-Cre mice with EGFR specifically deleted in intestinal epithelial cells,exhibited increased April gene expression by p40 treatment. p40-conditioned media from MSIE cells increased B-cell class switching to IgA(+) cells and IgA production,which was suppressed by APRIL receptor-neutralizing antibodies. Treatment of B cells with p40 did not show any effects on IgA production. p40 treatment increased April gene expression and protein production in small intestinal epithelial cells,fecal IgA levels,IgA(+)B220(+),IgA(+)CD19(+),and IgA(+) plasma cells in lamina propria of Egfr(fl/fl),but not of Egfr(fl/fl)-Vil-Cre,mice. Thus p40 upregulates EGFR-dependent APRIL production in intestinal epithelial cells,which may contribute to promoting IgA production.
View Publication
Villa GR et al. (NOV 2016)
Cancer cell 30 5 683--693
An LXR-Cholesterol Axis Creates a Metabolic Co-Dependency for Brain Cancers.
Small-molecule inhibitors targeting growth factor receptors have failed to show efficacy for brain cancers,potentially due to their inability to achieve sufficient drug levels in the CNS. Targeting non-oncogene tumor co-dependencies provides an alternative approach,particularly if drugs with high brain penetration can be identified. Here we demonstrate that the highly lethal brain cancer glioblastoma (GBM) is remarkably dependent on cholesterol for survival,rendering these tumors sensitive to Liver X receptor (LXR) agonist-dependent cell death. We show that LXR-623,a clinically viable,highly brain-penetrant LXRα-partial/LXRβ-full agonist selectively kills GBM cells in an LXRβ- and cholesterol-dependent fashion,causing tumor regression and prolonged survival in mouse models. Thus,a metabolic co-dependency provides a pharmacological means to kill growth factor-activated cancers in the CNS.
View Publication
(Mar 2025)
Nature Communications 16
An obesogenic FTO allele causes accelerated development, growth and insulin resistance in human skeletal muscle cells
Human GWAS have shown that obesogenic FTO polymorphisms correlate with lean mass,but the mechanisms have remained unclear. It is counterintuitive because lean mass is inversely correlated with obesity and metabolic diseases. Here,we use CRISPR to knock-in FTOrs9939609-A into hESC-derived tissue models,to elucidate potentially hidden roles of FTO during development. We find that among human tissues,FTOrs9939609-A most robustly affect human muscle progenitors’ proliferation,differentiation,senescence,thereby accelerating muscle developmental and metabolic aging. An edited FTOrs9939609-A allele over-stimulates insulin/IGF signaling via increased muscle-specific enhancer H3K27ac,FTO expression and m6A demethylation of H19 lncRNA and IGF2 mRNA,with excessive insulin/IGF signaling leading to insulin resistance upon replicative aging or exposure to high fat diet. This FTO-m6A-H19/IGF2 circuit may explain paradoxical GWAS findings linking FTOrs9939609-A to both leanness and obesity. Our results provide a proof-of-principle that CRISPR-hESC-tissue platforms can be harnessed to resolve puzzles in human metabolism. Human GWAS paradoxically linked FTO SNPs to both lean mass and sarcopenia/obesity. Here,Guang et al used CRISPR-edited stem cells to reveal that an obesogenic FTO SNP accelerates both muscle development and aging,by increasing RNA m6A demethylation.
View Publication
L. Luu et al. ( 2019)
Frontiers in cellular and infection microbiology 9 300
An Open-Format Enteroid Culture System for Interrogation of Interactions Between Toxoplasma gondii and the Intestinal Epithelium.
When transmitted through the oral route,Toxoplasma gondii first interacts with its host at the small intestinal epithelium. This interaction is crucial to controlling initial invasion and replication,as well as shaping the quality of the systemic immune response. It is therefore an attractive target for the design of novel vaccines and adjuvants. However,due to a lack of tractable infection models,we understand surprisingly little about the molecular pathways that govern this interaction. The in vitro culture of small intestinal epithelium as 3D enteroids shows great promise for modeling the epithelial response to infection. However,the enclosed luminal space makes the application of infectious agents to the apical epithelial surface challenging. Here,we have developed three novel enteroid-based techniques for modeling T. gondii infection. In particular,we have adapted enteroid culture protocols to generate collagen-supported epithelial sheets with an exposed apical surface. These cultures retain epithelial polarization,and the presence of fully differentiated epithelial cell populations. They are susceptible to infection with,and support replication of,T. gondii. Using quantitative label-free mass spectrometry,we show that T. gondii infection of the enteroid epithelium is associated with up-regulation of proteins associated with cholesterol metabolism,extracellular exosomes,intermicrovillar adhesion,and cell junctions. Inhibition of host cholesterol and isoprenoid biosynthesis with Atorvastatin resulted in a reduction in parasite load only at higher doses,indicating that de novo synthesis may support,but is not required for,parasite replication. These novel models therefore offer tractable tools for investigating how interactions between T. gondii and the host intestinal epithelium influence the course of infection.
View Publication
E. Vamva et al. (mar 2022)
STAR protocols 3 1 101228
An optimized measles virus glycoprotein-pseudotyped lentiviral vector production system to promote efficient transduction of human primary B cells.
Measles virus envelope pseudotyped LV (MV-LV) can achieve high B cell transduction rates (up to 50%),but suffers from low titers. To overcome current limitations,we developed an optimized MV-LV production protocol that achieved consistent B cell transduction efficiency up to 75%. We detail this protocol along with analytical assays to assess the results of MV-LV mediated B cell transduction,including flow cytometry for B cell phenotypic characterization and measurement of transduction efficiency,and ddPCR for VCN analysis.
View Publication
Nettenstrom L et al. (JAN 2013)
Journal of immunological methods 387 2-Jan 81--8
An optimized multi-parameter flow cytometry protocol for human T regulatory cell analysis on fresh and viably frozen cells, correlation with epigenetic analysis, and comparison of cord and adult blood.
Multi-parameter flow cytometry analysis of T regulatory (Treg) cells is a widely used approach in basic and translational research studies. This approach has been complicated by a lack of specific markers for Treg cells and lack of uniformity in the quantification of Treg cells. Given the central role of Treg cells in the inception and perpetuation of diverse immune responses as well as its target as a therapeutic,it is imperative to have established methodologies for Treg cell analysis that are robust and usable for studies with multiple subjects as well as multicenter studies. In this study,we describe an optimized multi-parameter flow cytometry protocol for the quantification of human Treg cells from freshly obtained and viably frozen samples and correlations with epigenetic Treg cell analysis (TSDR demethylation). We apply these two methodologies to characterize Treg cell differences between cord blood and adult peripheral blood. In summary,the optimized protocol appears to be robust for Treg cell quantification from freshly isolated or viably frozen cells and the multi-parameter flow cytometry findings are strongly positively correlated with TSDR demethylation thus providing several options for the characterization of Treg cell frequency and function in large translational or clinical studies.
View Publication
Girardot T et al. (OCT 2016)
Journal of immunological methods
An optimized protocol for adenosine triphosphate quantification in T lymphocytes of lymphopenic patients.
In several clinical contexts,the measurement of ATP concentration in T lymphocytes has been proposed as a biomarker of immune status,predictive of secondary infections. However,the use of such biomarker in lymphopenic patients requires some adaptations in the ATP dosage protocol. We used blood from healthy volunteers to determine the optimal experimental settings. We investigated technical aspects such as the type of anticoagulant for blood sampling,the effect of freeze and thaw cycles,the reagent and sample mixing sequence,and the optimal dilution buffer. We also shortened the incubation time to 8h,and even showed that a 30min incubation may be sufficient. To evaluate the ATP rise upon lymphocyte activation,the optimal dose of stimulant was defined to be 4μg/mL of phytohaemagglutinin. Lastly,we determined that the number of T cells needed for this measurement was as low as 50,000,which is compatible with the existing lymphopenia in clinical settings. This optimized protocol appears ready to be assessed in lymphopenic patients to further investigate the interconnection between T lymphocyte metabolism and impaired phenotype and functions.
View Publication