Werner A et al. (SEP 2015)
Nature 525 7570 523--527
Cell-fate determination by ubiquitin-dependent regulation of translation
Metazoan development depends on the accurate execution of differentiation programs that allow pluripotent stem cells to adopt specific fates. Differentiation requires changes to chromatin architecture and transcriptional networks,yet whether other regulatory events support cell-fate determination is less well understood. Here we identify the ubiquitin ligase CUL3 in complex with its vertebrate-specific substrate adaptor KBTBD8 (CUL3(KBTBD8)) as an essential regulator of human and Xenopus tropicalis neural crest specification. CUL3(KBTBD8) monoubiquitylates NOLC1 and its paralogue TCOF1,the mutation of which underlies the neurocristopathy Treacher Collins syndrome. Ubiquitylation drives formation of a TCOF1-NOLC1 platform that connects RNA polymerase I with ribosome modification enzymes and remodels the translational program of differentiating cells in favour of neural crest specification. We conclude that ubiquitin-dependent regulation of translation is an important feature of cell-fate determination.
View Publication
Reference
Wei Y et al. (MAR 2017)
Placenta 51 28--37
Generation of trophoblast-like cells from the amnion in vitro: A novel cellular model for trophoblast development.
Despite the high incidence of trophoblast-related diseases,the molecular mechanism of inadequate early trophoblast development is still unclear due to the lack of an appropriate cellular model in vitro. In the present study,we reprogrammed the amniotic cells to be induced pluripotent stem cells (iPSCs) via a non-virus and non-integrated method and subsequently differentiated them into trophoblast-like cells by a modified BMP4 strategy in E6 medium. Compared with the previously studied trophoblast-like cells from ESCs,the iPSCs derived trophoblast-like cells behave similarly in terms of gene expression profiles and biofunctions. Also we confirmed the differentiating tendency from iPSCs to be syncytiotrophoblasts-like cells might be caused by inappropriate differentiating oxygen condition. Additionally,we preliminarily indicated in vitro artificial" differentiation of iPSCs also undergoing a possible trophoblastic stem cell stage as witnessed in vivo. In conclusion we provided an in vitro cellular model to study early trophoblast development for specific individual by using the feasible amnion.
View Publication
Reference
Wei W et al. (APR 2013)
Proceedings of the National Academy of Sciences 110 15 E1352--E1360
Hypoxia induces a phase transition within a kinase signaling network in cancer cells
Hypoxia is a near-universal feature of cancer,promoting glycolysis,cellular proliferation,and angiogenesis. The molecular mechanisms of hypoxic signaling have been intensively studied,but the impact of changes in oxygen partial pressure (pO2) on the state of signaling networks is less clear. In a glioblastoma multiforme (GBM) cancer cell model,we examined the response of signaling networks to targeted pathway inhibition between 21% and 1% pO2. We used a microchip technology that facilitates quantification of a panel of functional proteins from statistical numbers of single cells. We find that near 1.5% pO2,the signaling network associated with mammalian target of rapamycin (mTOR) complex 1 (mTORC1)--a critical component of hypoxic signaling and a compelling cancer drug target--is deregulated in a manner such that it will be unresponsive to mTOR kinase inhibitors near 1.5% pO2,but will respond at higher or lower pO2 values. These predictions were validated through experiments on bulk GBM cell line cultures and on neurosphere cultures of a human-origin GBM xenograft tumor. We attempt to understand this behavior through the use of a quantitative version of Le Chatelier's principle,as well as through a steady-state kinetic model of protein interactions,both of which indicate that hypoxia can influence mTORC1 signaling as a switch. The Le Chatelier approach also indicates that this switch may be thought of as a type of phase transition. Our analysis indicates that certain biologically complex cell behaviors may be understood using fundamental,thermodynamics-motivated principles.
View Publication
Reference
Wee S et al. (DEC 2014)
PloS one 9 12 e115698
Selective calcium sensitivity in immature glioma cancer stem cells.
Tumor-initiating cells are a subpopulation in aggressive cancers that exhibit traits shared with stem cells,including the ability to self-renew and differentiate,commonly referred to as stemness. In addition,such cells are resistant to chemo- and radiation therapy posing a therapeutic challenge. To uncover stemness-associated functions in glioma-initiating cells (GICs),transcriptome profiles were compared to neural stem cells (NSCs) and gene ontology analysis identified an enrichment of Ca2+ signaling genes in NSCs and the more stem-like (NSC-proximal) GICs. Functional analysis in a set of different GIC lines regarding sensitivity to disturbed homeostasis using A23187 and Thapsigargin,revealed that NSC-proximal GICs were more sensitive,corroborating the transcriptome data. Furthermore,Ca2+ drug sensitivity was reduced in GICs after differentiation,with most potent effect in the NSC-proximal GIC,supporting a stemness-associated Ca2+ sensitivity. NSCs and the NSC-proximal GIC line expressed a larger number of ion channels permeable to potassium,sodium and Ca2+. Conversely,a higher number of and higher expression levels of Ca2+ binding genes that may buffer Ca2+,were expressed in NSC-distal GICs. In particular,expression of the AMPA glutamate receptor subunit GRIA1,was found to associate with Ca2+ sensitive NSC-proximal GICs,and decreased as GICs differentiated along with reduced Ca2+ drug sensitivity. The correlation between high expression of Ca2+ channels (such as GRIA1) and sensitivity to Ca2+ drugs was confirmed in an additional nine novel GIC lines. Calcium drug sensitivity also correlated with expression of the NSC markers nestin (NES) and FABP7 (BLBP,brain lipid-binding protein) in this extended analysis. In summary,NSC-associated NES+/FABP7+/GRIA1+ GICs were selectively sensitive to disturbances in Ca2+ homeostasis,providing a potential target mechanism for eradication of an immature population of malignant cells.
View Publication
Reference
Wang X et al. ( 2012)
Journal of immunotherapy (Hagerstown,Md. : 1997) 35 9 689--701
Phenotypic and functional attributes of lentivirus-modified CD19-specific human CD8+ central memory T cells manufactured at clinical scale.
A key determinant of the therapeutic potency of adoptive T-cell transfer is the extent to which infused cells can persist and expand in vivo. Ex vivo propagated virus-specific and chimeric antigen receptor (CAR)-redirected antitumor CD8 effector T cells derived from CD45RA(-) CD62L(+) central memory (TCM) precursors engraft long-term and reconstitute functional memory after adoptive transfer. Here,we describe a clinical scale,closed system,immunomagnetic selection method to isolate CD8(+) T(CM) from peripheral blood mononuclear cells (PBMC). This method uses the CliniMACS device to first deplete CD14(+),CD45RA(+),and CD4(+) cells from PBMC,and then to positively select CD62L(+) cells. The average purity and yield of CD8(+) CD45RA(-) CD62L TCM obtained in full-scale qualification runs were 70% and 0.4% (of input PBMC),respectively. These CD8(+) T(CM) are responsive to anti-CD3/CD28 bead stimulation,and can be efficiently transduced with CAR encoding lentiviral vectors,and undergo sustained expansion in interleukin (IL)-2/IL-15 over 3-6 weeks. The resulting CD8(+) T(CM)-derived effectors are polyclonal,retain expression of CD62L and CD28,exhibit CAR-redirected antitumor effector function,and are capable of huIL-15-dependent in vivo homeostatic engraftment after transfer to immunodeficient NOD/Scid IL-2RgCnull mice. Adoptive therapy using purified T(CM) cells is now the subject of a Food and Drug Administration-authorized clinical trial for the treatment of CD19(+) B-cell malignancies,and 3 clinical cell products expressing a CD19-specific CAR for IND 14645 have already been successfully generated from lymphoma patients using this manufacturing platform.
View Publication
Reference
Wang L et al. (NOV 2008)
PLoS Biology 6 11 e289
Gamma-Secretase Represents a Therapeutic Target for the Treatment of Invasive Glioma Mediated by the p75 Neurotrophin Receptor
The multifunctional signaling protein p75 neurotrophin receptor (p75(NTR)) is a central regulator and major contributor to the highly invasive nature of malignant gliomas. Here,we show that neurotrophin-dependent regulated intramembrane proteolysis (RIP) of p75(NTR) is required for p75(NTR)-mediated glioma invasion,and identify a previously unnamed process for targeted glioma therapy. Expression of cleavage-resistant chimeras of p75(NTR) or treatment of animals bearing p75(NTR)-positive intracranial tumors with clinically applicable gamma-secretase inhibitors resulted in dramatically decreased glioma invasion and prolonged survival. Importantly,proteolytic processing of p75(NTR) was observed in p75(NTR)-positive patient tumor specimens and brain tumor initiating cells. This work highlights the importance of p75(NTR) as a therapeutic target,suggesting that gamma-secretase inhibitors may have direct clinical application for the treatment of malignant glioma.
View Publication
Reference
Wagner JP et al. (AUG 2014)
Journal of pediatric surgery 49 8 1319--24; discussion 1324--5
INTRODUCTION Hirschsprung's disease is characterized by a developmental arrest of neural crest cell migration,causing distal aganglionosis. Transplanted cells derived from the neural crest may regenerate enteric ganglia in this condition. We investigated the potential of skin-derived precursor cells (SKPs) to engraft and to differentiate into enteric ganglia in aganglionic rat intestine in vivo. METHODS Adult Lewis rat jejunal segments were separated from intestinal continuity and treated with benzalkonium chloride to induce aganglionosis. Ganglia were identified via immunohistochemical stains for S100 and β-III tubulin (TUJ1). SKPs were procured from neonatal Lewis rats expressing enhanced green fluorescent protein (GFP) and cultured in neuroglial-selective media. SKP cell line expansion was quantified,and immunophenotypes were assessed by immunocytochemistry. Aganglionic segments underwent SKP transplantation 21-79days after benzalkonium chloride treatment. The presence of GFP+cells,mature neurons,and mature glia was evaluated at posttransplant days 1,6,and 9. RESULTS Benzalkonium chloride-induced aganglionosis persisted for at least 85days. Prior to differentiation,SKPs expressed S100,denoting neural crest lineage,and nestin,a marker of neuronal precursors. Differentiated SKPs in vitro expressed GFAP,a marker of glial differentiation,as well as TUJ1 and several enteric neurotransmitters. After transplantation,GFP+structures resembling ganglia were identified between longitudinal and circular smooth muscle layers. CONCLUSION SKPs are capable of engraftment,migration,and differentiation within aganglionic rodent intestine in vivo. Differentiated SKPs generate structures that resemble enteric ganglia. Our observations suggest that SKPs represent a potential gangliogenic therapeutic agent for Hirschsprung's disease.
View Publication
Reference
Vukovic J et al. (APR 2013)
Journal of Neuroscience 33 15 6603--6613
Immature Doublecortin-Positive Hippocampal Neurons Are Important for Learning But Not for Remembering
It is now widely accepted that hippocampal neurogenesis underpins critical cognitive functions,such as learning and memory. To assess the behavioral importance of adult-born neurons,we developed a novel knock-in mouse model that allowed us to specifically and reversibly ablate hippocampal neurons at an immature stage. In these mice,the diphtheria toxin receptor (DTR) is expressed under control of the doublecortin (DCX) promoter,which allows for specific ablation of immature DCX-expressing neurons after administration of diphtheria toxin while leaving the neural precursor pool intact. Using a spatially challenging behavioral test (a modified version of the active place avoidance test),we present direct evidence that immature DCX-expressing neurons are required for successful acquisition of spatial learning,as well as reversal learning,but are not necessary for the retrieval of stored long-term memories. Importantly,the observed learning deficits were rescued as newly generated immature neurons repopulated the granule cell layer upon termination of the toxin treatment. Repeat (or cyclic) depletion of immature neurons reinstated behavioral deficits if the mice were challenged with a novel task. Together,these findings highlight the potential of stimulating neurogenesis as a means to enhance learning.
View Publication
Reference
Vukovic J et al. (AUG 2013)
Stem Cells and Development 22 16 2341--2345
A Novel Fluorescent Reporter CDy1 Enriches for Neural Stem Cells Derived from the Murine Brain
Neurogenesis occurs continuously in two brain regions of adult mammals,underpinned by a pool of resident neural stem cells (NSCs) that can differentiate into all neural cell types. To advance our understanding of NSC function and to develop therapeutic and diagnostic approaches,it is important to accurately identify and enrich for NSCs. There are no definitive markers for the identification and enrichment of NSCs present in the mouse brain. Recently,a fluorescent rosamine dye,CDy1,has been identified as a label for pluripotency in cultured human embryonic and induced pluripotent stem cells. As similar cellular characteristics may enable the uptake and retention of CDy1 by other stem cell populations,we hypothesized that this dye may also enrich for primary NSCs from the mouse brain. Because the subventricular zone (SVZ) and the hippocampus represent brain regions that are highly enriched for NSCs in adult mammals,we sampled cells from these areas to test this hypothesis. These experiments revealed that CDy1 staining indeed allows for enrichment and selection of all neurosphere-forming cells from both the SVZ and the hippocampus. We next examined the effectiveness of CDy1 to select for NSCs derived from the SVZ of aged animals,where the total pool of NSCs present is significantly lower than in young animals. We found that CDy1 effectively labels the NSCs in adult and aged animals as assessed by the neurosphere assay and reflects the numbers of NSCs present in aged animals. CDy1,therefore,appears to be a novel marker for enrichment of NSCs in primary brain tissue preparations.
View Publication
Reference
Villa GR et al. (NOV 2016)
Cancer cell 30 5 683--693
An LXR-Cholesterol Axis Creates a Metabolic Co-Dependency for Brain Cancers.
Small-molecule inhibitors targeting growth factor receptors have failed to show efficacy for brain cancers,potentially due to their inability to achieve sufficient drug levels in the CNS. Targeting non-oncogene tumor co-dependencies provides an alternative approach,particularly if drugs with high brain penetration can be identified. Here we demonstrate that the highly lethal brain cancer glioblastoma (GBM) is remarkably dependent on cholesterol for survival,rendering these tumors sensitive to Liver X receptor (LXR) agonist-dependent cell death. We show that LXR-623,a clinically viable,highly brain-penetrant LXRα-partial/LXRβ-full agonist selectively kills GBM cells in an LXRβ- and cholesterol-dependent fashion,causing tumor regression and prolonged survival in mouse models. Thus,a metabolic co-dependency provides a pharmacological means to kill growth factor-activated cancers in the CNS.
View Publication
Reference
Vieira M et al. (AUG 2014)
Neurobiology of Disease 68 26--36
Ischemic insults induce necroptotic cell death in hippocampal neurons through the up-regulation of endogenous RIP3
Global cerebral ischemia induces selective acute neuronal injury of the CA1 region of the hippocampus. The type of cell death that ensues may include different programmed cell death mechanisms namely apoptosis and necroptosis,a recently described type of programmed necrosis. We investigated whether necroptosis contributes to hippocampal neuronal death following oxygen-glucose deprivation (OGD),an in vitro model of global ischemia. We observed that OGD induced a death receptor (DR)-dependent component of necroptotic cell death in primary cultures of hippocampal neurons. Additionally,we found that this ischemic challenge upregulated the receptor-interacting protein kinase 3 (RIP3) mRNA and protein levels,with a concomitant increase of the RIP1 protein. Together,these two related proteins form the necrosome,the complex responsible for induction of necroptotic cell death. Interestingly,we found that caspase-8 mRNA,a known negative regulator of necroptosis,was transiently decreased following OGD. Importantly,we observed that the OGD-induced increase in the RIP3 protein was paralleled in an in vivo model of transient global cerebral ischemia,specifically in the CA1 area of the hippocampus. Moreover,we show that the induction of endogenous RIP3 protein levels influenced neuronal toxicity since we found that RIP3 knock-down (KD) abrogated the component of OGD-induced necrotic neuronal death while RIP3 overexpression exacerbated neuronal death following OGD. Overexpression of RIP1 also had deleterious effects following the OGD challenge. Taken together,our results highlight that cerebral ischemia activates transcriptional changes that lead to an increase in the endogenous RIP3 protein level which might contribute to the formation of the necrosome complex and to the subsequent component of necroptotic neuronal death that follows ischemic injury.
View Publication
Reference
Verreault M et al. (MAR 2013)
PLoS ONE 8 3 e59597
Combined RNAi-Mediated Suppression of Rictor and EGFR Resulted in Complete Tumor Regression in an Orthotopic Glioblastoma Tumor Model
The PI3K/AKT/mTOR pathway is commonly over activated in glioblastoma (GBM),and Rictor was shown to be an important regulator downstream of this pathway. EGFR overexpression is also frequently found in GBM tumors,and both EGFR and Rictor are associated with increased proliferation,invasion,metastasis and poor prognosis. This research evaluated in vitro and in vivo whether the combined silencing of EGFR and Rictor would result in therapeutic benefits. The therapeutic potential of targeting these proteins in combination with conventional agents with proven activity in GBM patients was also assessed. In vitro validation studies were carried out using siRNA-based gene silencing methods in a panel of three commercially available human GBM cell lines,including two PTEN mutant lines (U251MG and U118MG) and one PTEN-wild type line (LN229). The impact of EGFR and/or Rictor silencing on cell migration and sensitivity to chemotherapeutic drugs in vitro was determined. In vivo validation of these studies was focused on EGFR and/or Rictor silencing achieved using doxycycline-inducible shRNA-expressing U251MG cells implanted orthotopically in Rag2M mice brains. Target silencing,tumor size and tumor cell proliferation were assessed by quantification of immunohistofluorescence-stained markers. siRNA-mediated silencing of EGFR and Rictor reduced U251MG cell migration and increased sensitivity of the cells to irinotecan,temozolomide and vincristine. In LN229,co-silencing of EGFR and Rictor resulted in reduced cell migration,and increased sensitivity to vincristine and temozolomide. In U118MG,silencing of Rictor alone was sufficient to increase this line's sensitivity to vincristine and temozolomide. In vivo,while the silencing of EGFR or Rictor alone had no significant effect on U251MG tumor growth,silencing of EGFR and Rictor together resulted in a complete eradication of tumors. These data suggest that the combined silencing of EGFR and Rictor should be an effective means of treating GBM.
View Publication