Verreault M et al. (MAR 2016)
Clinical Cancer Research 22 5 1185--1196
Preclinical Efficacy of the MDM2 Inhibitor RG7112 in MDM2-Amplified and TP53 Wild-type Glioblastomas
PURPOSE p53 pathway alterations are key molecular events in glioblastoma (GBM). MDM2 inhibitors increase expression and stability of p53 and are presumed to be most efficacious in patients with TP53 wild-type and MDM2-amplified cancers. However,this biomarker hypothesis has not been tested in patients or patient-derived models for GBM. EXPERIMENTAL DESIGN We performed a preclinical evaluation of RG7112 MDM2 inhibitor,across a panel of 36 patient-derived GBM cell lines (PDCL),each genetically characterized according to their P53 pathway status. We then performed a pharmacokinetic (PK) profiling of RG7112 distribution in mice and evaluated the therapeutic activity of RG7112 in orthotopic and subcutaneous GBM models. RESULTS MDM2-amplified PDCLs were 44 times more sensitive than TP53-mutated lines that showed complete resistance at therapeutically attainable concentrations (avg. IC50 of 0.52 μmol/L vs. 21.9 μmol/L). MDM4-amplified PDCLs were highly sensitive but showed intermediate response (avg. IC50 of 1.2 μmol/L),whereas response was heterogeneous in TP53 wild-type PDCLs with normal MDM2/4 levels (avg. IC50 of 7.7 μmol/L). In MDM2-amplified lines,RG7112 restored p53 activity inducing robust p21 expression and apoptosis. PK profiling of RG7112-treated PDCL intracranial xenografts demonstrated that the compound significantly crosses the blood-brain and the blood-tumor barriers. Most importantly,treatment of MDM2-amplified/TP53 wild-type PDCL-derived model (subcutaneous and orthotopic) reduced tumor growth,was cytotoxic,and significantly increased survival. CONCLUSIONS These data strongly support development of MDM2 inhibitors for clinical testing in MDM2-amplified GBM patients. Moreover,significant efficacy in a subset of non-MDM2-amplified models suggests that additional markers of response to MDM2 inhibitors must be identified.
View Publication
Reference
Verginelli F et al. (DEC 2013)
Nature Communications 4 2956
Transcription factors FOXG1 and Groucho/TLE promote glioblastoma growth
Glioblastoma (GBM) is the most common and deadly malignant brain cancer,with a median survival of <2 years. GBM displays a cellular complexity that includes brain tumour-initiating cells (BTICs),which are considered as potential key targets for GBM therapies. Here we show that the transcription factors FOXG1 and Groucho/TLE are expressed in poorly differentiated astroglial cells in human GBM specimens and in primary cultures of GBM-derived BTICs,where they form a complex. FOXG1 knockdown in BTICs causes downregulation of neural stem/progenitor and proliferation markers,increased replicative senescence,upregulation of astroglial differentiation genes and decreased BTIC-initiated tumour growth after intracranial transplantation into host mice. These effects are phenocopied by Groucho/TLE knockdown or dominant inhibition of the FOXG1:Groucho/TLE complex. These results provide evidence that transcriptional programmes regulated by FOXG1 and Groucho/TLE are important for BTIC-initiated brain tumour growth,implicating FOXG1 and Groucho/TLE in GBM tumourigenesis.
View Publication
Reference
Veeraraghavalu K et al. (OCT 2013)
Molecular Neurodegeneration 8 1 41
Endogenous expression of FAD-linked PS1 impairs proliferation, neuronal differentiation and survival of adult hippocampal progenitors
BACKGROUND Alzheimer's disease (AD) is characterized by progressive memory loss and impaired cognitive function. Early-onset familial forms of the disease (FAD) are caused by inheritance of mutant genes encoding presenilin 1 (PS1) variants. We have demonstrated that prion promoter (PrP)-driven expression of human FAD-linked PS1 variants in mice leads to impairments in environmental enrichment (EE)-induced adult hippocampal neural progenitor cell (AHNPC) proliferation and neuronal differentiation,and have provided evidence that accessory cells in the hippocampal niche expressing PS1 variants may modulate AHNPC phenotypes,in vivo. While of significant interest,these latter studies relied on transgenic mice that express human PS1 variant transgenes ubiquitously and at high levels,and the consequences of wild type or mutant PS1 expressed under physiologically relevant levels on EE-mediated AHNPC phenotypes has not yet been tested. RESULTS To assess the impact of mutant PS1 on EE-induced AHNPC phenotypes when expressed under physiological levels,we exposed adult mice that constitutively express the PSEN1 M146V mutation driven by the endogenous PSEN1 promoter (PS1 M146V knock-in" (KI) mice) to standard or EE-housed conditions. We show that in comparison to wild type PS1 mice AHNPCs in mice carrying homozygous (PS1M146V/M146V) or heterozygous (PS1M146V/+) M146V mutant alleles fail to exhibit EE-induced proliferation and commitment towards neurogenic lineages. More importantly we report that the survival of newborn progenitors are diminished in PS1 M146V KI mice exposed to EE-conditions compared to respective EE wild type controls. CONCLUSIONS Our findings reveal that expression at physiological levels achieved by a single PS1 M146V allele is sufficient to impair EE-induced AHNPC proliferation survival and neuronal differentiation in vivo. These results and our finding that microglia expressing a single PS1 M146V allele impairs the proliferation of wild type AHNPCs in vitro argue that expression of mutant PS1 in the AHNPC niche impairs AHNPCs phenotypes in a dominant non-cell autonomous manner.
View Publication
Reference
Vavilala DT et al. ( 2014)
Toxicology reports 1 1152--1161
Prohexadione, a plant growth regulator, inhibits histone lysine demethylases and modulates epigenetics.
BACKGROUND Epigenetic modifications,particularly DNA methylation and posttranslational histone modifications regulate heritable changes in transcription without changes in the DNA sequence. Despite a number of studies showing clear links between environmental factors and DNA methylation,little is known about the effect of environmental factors on the recently identified histone lysine methylation. Since their identification numerous studies have establish critical role played by these enzymes in mammalian development. OBJECTIVES Identification of the Jumonji (Jmj) domain containing histone lysine demethylase have added a new dimension to epigenetic control of gene expression by dynamic regulation of histone methylation marks. The objective of our study was to evaluate the effect of prohexadione and trinexapac,widely used plant growth regulators of the acylcyclohexanediones class,on the enzymatic activity of histone lysine demethylases and histone modifications during the neural stem/progenitor cell differentiation. METHODS Here we show that prohexadione,but not trinexapac,directly inhibits non-heme iron (II),2-oxoglutarate-dependent histone lysine demethylase such as Jmjd2a. We used molecular modeling to show binding of prohexadione to Jmjd2a. We also performed in vitro demethylation assays to show the inhibitory effect of prohexadione on Jmjd2a. Further we tested this molecule in cell culture model of mouse hippocampal neural stem/progenitor cells to demonstrate its effect toward neuronal proliferation and differentiation. RESULTS Molecular modeling studies suggest that prohexadione binds to the 2-oxoglutarate binding site of Jmjd2a demethylase. Treatment of primary neural stem/progenitor cells with prohexadione showed a concentration dependent reduction in their proliferation. Further,the prohexadione treated neurospheres were induced toward neurogenic lineage upon differentiation. CONCLUSIONS Our results describe an important chemico-biological interaction of prohexadione,in light of critical roles played by histone lysine demethylases in human health and diseases.
View Publication
Reference
Usta S et al. (OCT 2014)
Annals of translational medicine 2 10 97
Chemically defined serum-free and xeno-free media for multiple cell lineages.
Cell culture is one of the most common methods used to recapitulate a human disease environment in a laboratory setting. Cell culture techniques are used to grow and maintain cells of various types including those derived from primary tissues,such as stem cells and cancer tumors. However,a major confounding factor with cell culture is the use of serum and animal (xeno) products in the media. The addition of animal products introduces batch and lot variations that lead to experimental variability,confounds studies with therapeutic outcomes for cultured cells,and represents a major cost associated with cell culture. Here we report a commercially available serum-free,albumin-free,and xeno free (XF) media (Neuro-Pure(TM)) that is more cost-effective than other commercial medias. Neuro-Pure was used to maintain and differentiate various cells of neuronal lineages,fibroblasts,as well as specific cancer cell lines; without the use of contaminants such serum,albumin,and animal products. Neuro-Pure allows for a controlled and reproducible cell culture environment that is applicable to translational medicine and general tissue culture.
View Publication
Reference
Trevisan M et al. (JAN 2017)
International journal of molecular sciences 18 1
Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells.
Induced pluripotent stem cells (iPSCs) are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka,who first generated iPSCs by retroviral transduction of four reprogramming factors,several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However,the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study,three different strategies,based on retroviral vectors,episomal vectors,and Sendai virus vectors,were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells,including the expression of alkaline phosphatase and stemness maker genes,and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion,the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.
View Publication
Reference
Teratani-Ota Y et al. (OCT 2016)
In vitro cellular & developmental biology. Animal 52 9 961--973
Induction of specific neuron types by overexpression of single transcription factors.
Specific neuronal types derived from embryonic stem cells (ESCs) can facilitate mechanistic studies and potentially aid in regenerative medicine. Existing induction methods,however,mostly rely on the effects of the combined action of multiple added growth factors,which generally tend to result in mixed populations of neurons. Here,we report that overexpression of specific transcription factors (TFs) in ESCs can rather guide the differentiation of ESCs towards specific neuron lineages. Analysis of data on gene expression changes 2 d after induction of each of 185 TFs implicated candidate TFs for further ESC differentiation studies. Induction of 23 TFs (out of 49 TFs tested) for 6 d facilitated neural differentiation of ESCs as inferred from increased proportion of cells with neural progenitor marker PSA-NCAM. We identified early activation of the Notch signaling pathway as a common feature of most potent inducers of neural differentiation. The majority of neuron-like cells generated by induction of Ascl1,Smad7,Nr2f1,Dlx2,Dlx4,Nr2f2,Barhl2,and Lhx1 were GABA-positive and expressed other markers of GABAergic neurons. In the same way,we identified Lmx1a and Nr4a2 as inducers for neurons bearing dopaminergic markers and Isl1,Fezf2,and St18 for cholinergic motor neurons. A time-course experiment with induction of Ascl1 showed early upregulation of most neural-specific messenger RNA (mRNA) and microRNAs (miRNAs). Sets of Ascl1-induced mRNAs and miRNAs were enriched in Ascl1 targets. In further studies,enrichment of cells obtained with the induction of Ascl1,Smad7,and Nr2f1 using microbeads resulted in essentially pure population of neuron-like cells with expression profiles similar to neural tissues and expressed markers of GABAergic neurons. In summary,this study indicates that induction of transcription factors is a promising approach to generate cultures that show the transcription profiles characteristic of specific neural cell types.
View Publication
Reference
Teplyuk NM et al. (MAR 2016)
EMBO molecular medicine 8 3 268--87
Therapeutic potential of targeting microRNA-10b in established intracranial glioblastoma: first steps toward the clinic.
MicroRNA-10b (miR-10b) is a unique oncogenic miRNA that is highly expressed in all GBM subtypes,while absent in normal neuroglial cells of the brain. miR-10b inhibition strongly impairs proliferation and survival of cultured glioma cells,including glioma-initiating stem-like cells (GSC). Although several miR-10b targets have been identified previously,the common mechanism conferring the miR-10b-sustained viability of GSC is unknown. Here,we demonstrate that in heterogeneous GSC,miR-10b regulates cell cycle and alternative splicing,often through the non-canonical targeting via 5'UTRs of its target genes,including MBNL1-3,SART3,and RSRC1. We have further assessed the inhibition of miR-10b in intracranial human GSC-derived xenograft and murine GL261 allograft models in athymic and immunocompetent mice. Three delivery routes for the miR-10b antisense oligonucleotide inhibitors (ASO),direct intratumoral injections,continuous osmotic delivery,and systemic intravenous injections,have been explored. In all cases,the treatment with miR-10b ASO led to targets' derepression,and attenuated growth and progression of established intracranial GBM. No significant systemic toxicity was observed upon ASO administration by local or systemic routes. Our results indicate that miR-10b is a promising candidate for the development of targeted therapies against all GBM subtypes.
View Publication
Reference
Tan WL et al. (JAN 2017)
Cardiovascular Research 113 3 298--309
A landscape of circular RNA expression in the human heart
AIMS: Circular RNA (circRNA) is a newly validated class of single-stranded RNA,ubiquitously expressed in mammalian tissues and possessing key functions including acting as microRNA sponges and as transcriptional regulators by binding to RNA-binding proteins. While independent studies confirm the expression of circRNA in various tissue types,genome-wide circRNA expression in the heart has yet to be described in detail. METHODS AND RESULTS: We performed deep RNA-sequencing on ribosomal-depleted RNA isolated from 12 human hearts,25 mouse hearts and across a 28-day differentiation time-course of human embryonic stem cell-derived cardiomyocytes. Using purpose-designed bioinformatics tools,we uncovered a total of 15 318 and 3017 cardiac circRNA within human and mouse,respectively. Their abundance generally correlates with the abundance of their cognate linear RNA,but selected circRNAs exist at disproportionately higher abundance. Top highly expressed circRNA corresponded to key cardiac genes including Titin (TTN),RYR2,and DMD. The most abundant cardiac-expressed circRNA is a cytoplasmic localized single-exon circSLC8A1-1. The longest human transcript TTN alone generates up to 415 different exonic circRNA isoforms,the majority (83%) of which originates from the I-band domain. Finally,we confirmed the expression of selected cardiac circRNA by RT-PCR,Sanger sequencing and single molecule RNA-fluorescence in situ hybridization. CONCLUSIONS: Our data provide a detailed circRNA expression landscape in hearts. There is a high-abundance of specific cardiac-expressed circRNA. These findings open up a new avenue for future investigation into this emerging class of RNA.
View Publication
Reference
Tan Q et al. (JAN 2018)
JCI insight 3 1
Activation-induced cytidine deaminase deficiency accelerates autoimmune diabetes in NOD mice.
B cells play an important role in type 1 diabetes (T1D) development. However,the role of B cell activation-induced cytidine deaminase (AID) in diabetes development is not clear. We hypothesized that AID is important in the immunopathogenesis of T1D. To test this hypothesis,we generated AID-deficient (AID-/-) NOD mice. We found that AID-/-NOD mice developed accelerated T1D,with worse insulitis and high levels of anti-insulin autoantibody in the circulation. Interestingly,neither maternal IgG transferred through placenta,nor IgA transferred through milk affected the accelerated diabetes development. AID-/-NOD mice showed increased activation and proliferation of B and T cells. We found enhanced T-B cell interactions in AID-/-NOD mice,with increased T-bet and IFN-γ expression in CD4+ T cells in the presence of AID-/- B cells. Moreover,excessive lymphoid expansion was observed in AID-/-NOD mice. Importantly,antigen-specific BDC2.5 CD4+ T cells caused more rapid onset of diabetes when cotransferred with AID-/- B cells than when cotransferred with AID+/+ B cells. Thus,our study provides insights into the role of AID in T1D. Our data also suggest that AID is a negative regulator of immune tolerance and ablation of AID can lead to exacerbated islet autoimmunity and accelerated T1D development.
View Publication
Reference
Tan Q et al. ( 2017)
Biomaterials 113 118--132
Human airway organoid engineering as a step toward lung regeneration and disease modeling
Organoids represent both a potentially powerful tool for the study cell-cell interactions within tissue-like environments,and a platform for tissue regenerative approaches. The development of lung tissue-like organoids from human adult-derived cells has not previously been reported. Here we combined human adult primary bronchial epithelial cells,lung fibroblasts,and lung microvascular endothelial cells in supportive 3D culture conditions to generate airway organoids. We demonstrate that randomly-seeded mixed cell populations undergo rapid condensation and self-organization into discrete epithelial and endothelial structures that are mechanically robust and stable during long term culture. After condensation airway organoids generate invasive multicellular tubular structures that recapitulate limited aspects of branching morphogenesis,and require actomyosin-mediated force generation and YAP/TAZ activation. Despite the proximal source of primary epithelium used in the airway organoids,discrete areas of both proximal and distal epithelial markers were observed over time in culture,demonstrating remarkable epithelial plasticity within the context of organoid cultures. Airway organoids also exhibited complex multicellular responses to a prototypical fibrogenic stimulus (TGF-??1) in culture,and limited capacity to undergo continued maturation and engraftment after ectopic implantation under the murine kidney capsule. These results demonstrate that the airway organoid system developed here represents a novel tool for the study of disease-relevant cell-cell interactions,and establishes this platform as a first step toward cell-based therapy for chronic lung diseases based on de novo engineering of implantable airway tissues.
View Publication
Reference
Tagliafierro L et al. (NOV 2017)
Alzheimer's & dementia : the journal of the Alzheimer's Association 13 11 1237--1250
Genetic analysis of α-synuclein 3' untranslated region and its corresponding microRNAs in relation to Parkinson's disease compared to dementia with Lewy bodies.
INTRODUCTION The α-synuclein (SNCA) gene has been implicated in the etiology of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). METHODS A computational analysis of SNCA 3' untranslated region to identify potential microRNA (miRNA) binding sites and quantitative real-time polymerase chain reaction (PCR) to determine their expression in isogenic induced pluripotent stem cell-derived dopaminergic and cholinergic neurons as a model of PD and DLB,respectively,were performed. In addition,we performed a deep sequencing analysis of the SNCA 3' untranslated region of autopsy-confirmed cases of PD,DLB,and normal controls,followed by genetic association analysis of the identified variants. RESULTS We identified four miRNA binding sites and observed a neuronal-type-specific expression profile for each miRNA in the different isogenic induced pluripotent stem cell-derived dopaminergic and cholinergic neurons. Furthermore,we found that the short structural variant rs777296100-polyT was moderately associated with DLB but not with PD. DISCUSSION We suggest that the regulation of SNCA expression through miRNAs is neuronal-type-specific and possibly plays a part in the phenotypic heterogeneity of synucleinopathies. Furthermore,genetic variability in the SNCA gene may contribute to synucleinopathies in a pathology-specific manner.
View Publication