Pyonteck SM et al. (OCT 2013)
Nature medicine 19 10 1264--72
CSF-1R inhibition alters macrophage polarization and blocks glioma progression.
Glioblastoma multiforme (GBM) comprises several molecular subtypes,including proneural GBM. Most therapeutic approaches targeting glioma cells have failed. An alternative strategy is to target cells in the glioma microenvironment,such as tumor-associated macrophages and microglia (TAMs). Macrophages depend on colony stimulating factor-1 (CSF-1) for differentiation and survival. We used an inhibitor of the CSF-1 receptor (CSF-1R) to target TAMs in a mouse proneural GBM model,which significantly increased survival and regressed established tumors. CSF-1R blockade additionally slowed intracranial growth of patient-derived glioma xenografts. Surprisingly,TAMs were not depleted in treated mice. Instead,glioma-secreted factors,including granulocyte-macrophage CSF (GM-CSF) and interferon-γ (IFN-γ),facilitated TAM survival in the context of CSF-1R inhibition. Expression of alternatively activated M2 markers decreased in surviving TAMs,which is consistent with impaired tumor-promoting functions. These gene signatures were associated with enhanced survival in patients with proneural GBM. Our results identify TAMs as a promising therapeutic target for proneural gliomas and establish the translational potential of CSF-1R inhibition for GBM.
View Publication
Reference
Prodeus A et al. (SEP 2017)
JCI insight 2 18
VISTA.COMP - an engineered checkpoint receptor agonist that potently suppresses T cell-mediated immune responses.
V-domain immunoglobulin suppressor of T cell activation (VISTA) is a recently discovered immune checkpoint ligand that functions to suppress T cell activity. The therapeutic potential of activating this immune checkpoint pathway to reduce inflammatory responses remains untapped,largely due to the inability to derive agonists targeting its unknown receptor. A dimeric construct of the IgV domain of VISTA (VISTA-Fc) was shown to suppress the activation of T cells in vitro. However,this effect required its immobilization on a solid surface,suggesting that VISTA-Fc may display limited efficacy as a VISTA-receptor agonist in vivo. Herein,we have designed a stable pentameric VISTA construct (VISTA.COMP) by genetically fusing its IgV domain to the pentamerization domain from the cartilage oligomeric matrix protein (COMP). In contrast to VISTA-Fc,VISTA.COMP does not require immobilization to inhibit the proliferation of CD4+ T cells undergoing polyclonal activation. Furthermore,we show that VISTA.COMP,but not VISTA-Fc,functions as an immunosuppressive agonist in vivo capable of prolonging the survival of skin allografts in a mouse transplant model as well as rescuing mice from acute concanavalin-A-induced hepatitis. Collectively,we believe our data demonstrate that VISTA.COMP is a checkpoint receptor agonist and the first agent to our knowledge targeting the putative VISTA-receptor to suppress T cell-mediated immune responses.
View Publication
Reference
Prince OA et al. (MAR 2018)
Cellular microbiology 20 3 e12810
Modelling persistent Mycoplasma pneumoniae infection of human airway epithelium.
Mycoplasma pneumoniae is a human respiratory tract pathogen causing acute and chronic airway disease states that can include long-term carriage and extrapulmonary spread. The mechanisms of persistence and migration beyond the conducting airways,however,remain poorly understood. We previously described an acute exposure model using normal human bronchial epithelium (NHBE) in air-liquid interface culture,showing that M. pneumoniae gliding motility is essential for initial colonisation and subsequent spread,including localisation to epithelial cell junctions. We extended those observations here,characterizing M. pneumoniae infection of NHBE for up to 4 weeks. Colonisation of the apical surface was followed by pericellular invasion of the basolateral compartment and migration across the underlying transwell membrane. Despite fluctuations in transepithelial electrical resistance and increased NHBE cell desquamation,barrier function remained largely intact. Desquamation was accompanied by epithelial remodelling that included cytoskeletal reorganisation and development of deep furrows in the epithelium. Finally,M. pneumoniae strains S1 and M129 differed with respect to invasion and histopathology,consistent with contrasting virulence in experimentally infected mice. In summary,this study reports pericellular invasion,NHBE cytoskeletal reorganisation,and tissue remodelling with persistent infection in a human airway epithelium model,providing clear insight into the likely route for extrapulmonary spread.
View Publication
Reference
Poloni A et al. (JAN 2015)
Journal of Molecular Neuroscience 55 1 91--98
Glial-Like Differentiation Potential of Human Mature Adipocytes
The potential ability to differentiate dedifferentiated adipocytes into a neural lineage is attracting strong interest as an emerging method of producing model cells for the treatment of a variety of neurological diseases. Here,we describe the efficient conversion of dedifferentiated adipocytes into a neural-like cell population. These cells grew in neurosphere-like structures and expressed a high level of the early neuroectodermal marker Nestin. These neurospheres could proliferate and express stemness genes,suggesting that these cells could be committed to the neural lineage. After neural induction,NeuroD1,Sox1,Double Cortin,and Eno2 were not expressed. Patch clamp data did not reveal different electrophysiological properties,indicating the inability of these cells to differentiate into mature neurons. In contrast,the differentiated cells expressed a high level of CLDN11,as demonstrated using molecular method,and stained positively for the glial cell markers CLDN11 and GFAP,as demonstrated using immunocytochemistry. These data were confirmed by quantitative results for glial cell line-derived neurotrophic factor production,which showed a higher secretion level in neurospheres and the differentiated cells compared with the untreated cells. In conclusion,our data demonstrate morphological,molecular,and immunocytochemical evidence of initial neural differentiation of mature adipocytes,committing to a glial lineage.
View Publication
Reference
Platholi J et al. (JUL 2014)
PLoS ONE 9 7 e102978
Isoflurane Reversibly Destabilizes Hippocampal Dendritic Spines by an Actin-Dependent Mechanism
General anesthetics produce a reversible coma-like state through modulation of excitatory and inhibitory synaptic transmission. Recent evidence suggests that anesthetic exposure can also lead to sustained cognitive dysfunction. However,the subcellular effects of anesthetics on the structure of established synapses are not known. We investigated effects of the widely used volatile anesthetic isoflurane on the structural stability of hippocampal dendritic spines,a postsynaptic structure critical to excitatory synaptic transmission in learning and memory. Exposure to clinical concentrations of isoflurane induced rapid and non-uniform shrinkage and loss of dendritic spines in mature cultured rat hippocampal neurons. Spine shrinkage was associated with a reduction in spine F-actin concentration. Spine loss was prevented by either jasplakinolide or cytochalasin D,drugs that prevent F-actin disassembly. Isoflurane-induced spine shrinkage and loss were reversible upon isoflurane elimination. Thus,isoflurane destabilizes spine F-actin,resulting in changes to dendritic spine morphology and number. These findings support an actin-based mechanism for isoflurane-induced alterations of synaptic structure in the hippocampus. These reversible alterations in dendritic spine structure have important implications for acute anesthetic effects on excitatory synaptic transmission and synaptic stability in the hippocampus,a locus for anesthetic-induced amnesia,and have important implications for anesthetic effects on synaptic plasticity.
View Publication
Reference
Perna F et al. (OCT 2017)
Cancer cell 32 4 506--519.e5
Integrating Proteomics and Transcriptomics for Systematic Combinatorial Chimeric Antigen Receptor Therapy of AML.
Chimeric antigen receptor (CAR) therapy targeting CD19 has yielded remarkable outcomes in patients with acute lymphoblastic leukemia. To identify potential CAR targets in acute myeloid leukemia (AML),we probed the AML surfaceome for overexpressed molecules with tolerable systemic expression. We integrated large transcriptomics and proteomics datasets from malignant and normal tissues,and developed an algorithm to identify potential targets expressed in leukemia stem cells,but not in normal CD34+CD38- hematopoietic cells,T cells,or vital tissues. As these investigations did not uncover candidate targets with a profile as favorable as CD19,we developed a generalizable combinatorial targeting strategy fulfilling stringent efficacy and safety criteria. Our findings indicate that several target pairings hold great promise for CAR therapy of AML.
View Publication
Reference
Perez-Campo FM et al. (JUN 2014)
STEM CELLS 32 6 1591--1601
MOZ-Mediated Repression of p16 INK 4 a Is Critical for the Self-Renewal of Neural and Hematopoietic Stem Cells
Although inhibition of p16(INK4a) expression is critical to preserve the proliferative capacity of stem cells,the molecular mechanisms responsible for silencing p16(INK4a) expression remain poorly characterized. Here,we show that the histone acetyltransferase (HAT) monocytic leukemia zinc finger protein (MOZ) controls the proliferation of both hematopoietic and neural stem cells by modulating the transcriptional repression of p16(INK4a) . In the absence of the HAT activity of MOZ,expression of p16(INK4a) is upregulated in progenitor and stem cells,inducing an early entrance into replicative senescence. Genetic deletion of p16(INK4a) reverses the proliferative defect in both Moz(HAT) (-) (/) (-) hematopoietic and neural progenitors. Our results suggest a critical requirement for MOZ HAT activity to silence p16(INK4a) expression and to protect stem cells from early entrance into replicative senescence.
View Publication
Reference
Peng S et al. (DEC 2015)
Annals of clinical and translational neurology 2 12 1085--104
Suppression of agrin-22 production and synaptic dysfunction in Cln1 (-/-) mice.
OBJECTIVE Oxidative stress in the brain is highly prevalent in many neurodegenerative disorders including lysosomal storage disorders,in which neurodegeneration is a devastating manifestation. Despite intense studies,a precise mechanism linking oxidative stress to neuropathology in specific neurodegenerative diseases remains largely unclear. METHODS Infantile neuronal ceroid lipofuscinosis (INCL) is a devastating neurodegenerative lysosomal storage disease caused by mutations in the ceroid lipofuscinosis neuronal-1 (CLN1) gene encoding palmitoyl-protein thioesterase-1. Previously,we reported that in the brain of Cln1 (-/-) mice,which mimic INCL,and in postmortem brain tissues from INCL patients,increased oxidative stress is readily detectable. We used molecular,biochemical,immunohistological,and electrophysiological analyses of brain tissues of Cln1 (-/-) mice to study the role(s) of oxidative stress in mediating neuropathology. RESULTS Our results show that in Cln1 (-/-) mice oxidative stress in the brain via upregulation of the transcription factor,CCAAT/enhancer-binding protein-δ,stimulated expression of serpina1,which is an inhibitor of a serine protease,neurotrypsin. Moreover,in the Cln1 (-/-) mice,suppression of neurotrypsin activity by serpina1 inhibited the cleavage of agrin (a large proteoglycan),which substantially reduced the production of agrin-22,essential for synaptic homeostasis. Direct whole-cell recordings at the nerve terminals of Cln1 (-/-) mice showed inhibition of Ca(2+) currents attesting to synaptic dysfunction. Treatment of these mice with a thioesterase-mimetic small molecule,N-tert (Butyl) hydroxylamine (NtBuHA),increased agrin-22 levels. INTERPRETATION Our findings provide insight into a novel pathway linking oxidative stress with synaptic pathology in Cln1 (-/-) mice and suggest that NtBuHA,which increased agrin-22 levels,may ameliorate synaptic dysfunction in this devastating neurodegenerative disease.
View Publication
Reference
Pekalski ML et al. (AUG 2017)
JCI insight 2 16
Neonatal and adult recent thymic emigrants produce IL-8 and express complement receptors CR1 and CR2.
The maintenance of peripheral naive T lymphocytes in humans is dependent on their homeostatic division,not continuing emigration from the thymus,which undergoes involution with age. However,postthymic maintenance of naive T cells is still poorly understood. Previously we reported that recent thymic emigrants (RTEs) are contained in CD31+CD25- naive T cells as defined by their levels of signal joint T cell receptor rearrangement excision circles (sjTRECs). Here,by differential gene expression analysis followed by protein expression and functional studies,we define that the naive T cells having divided the least since thymic emigration express complement receptors (CR1 and CR2) known to bind complement C3b- and C3d-decorated microbial products and,following activation,produce IL-8 (CXCL8),a major chemoattractant for neutrophils in bacterial defense. We also observed an IL-8-producing memory T cell subpopulation coexpressing CR1 and CR2 and with a gene expression signature resembling that of RTEs. The functions of CR1 and CR2 on T cells remain to be determined,but we note that CR2 is the receptor for Epstein-Barr virus,which is a cause of T cell lymphomas and a candidate environmental factor in autoimmune disease.
View Publication
Reference
Pei Y et al. (MAR 2016)
Cancer cell 29 3 311--23
HDAC and PI3K Antagonists Cooperate to Inhibit Growth of MYC-Driven Medulloblastoma.
Medulloblastoma (MB) is a highly malignant pediatric brain tumor. Despite aggressive therapy,many patients succumb to the disease,and survivors experience severe side effects from treatment. MYC-driven MB has a particularly poor prognosis and would greatly benefit from more effective therapies. We used an animal model of MYC-driven MB to screen for drugs that decrease viability of tumor cells. Among the most effective compounds were histone deacetylase inhibitors (HDACIs). HDACIs potently inhibit survival of MYC-driven MB cells in vitro,in part by inducing expression of the FOXO1 tumor suppressor gene. HDACIs also synergize with phosphatidylinositol 3-kinase inhibitors to inhibit tumor growth in vivo. These studies identify an effective combination therapy for the most aggressive form of MB.
View Publication
Reference
Pasquier J et al. (JUN 2017)
The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation 36 6 684--693
Coculturing with endothelial cells promotes in vitro maturation and electrical coupling of human embryonic stem cell-derived cardiomyocytes.
BACKGROUND Pluripotent human embryonic stem cells (hESC) are a promising source of repopulating cardiomyocytes. We hypothesized that we could improve maturation of cardiomyocytes and facilitate electrical interconnections by creating a model that more closely resembles heart tissue; that is,containing both endothelial cells (ECs) and cardiomyocytes. METHODS We induced cardiomyocyte differentiation in the coculture of an hESC line expressing the cardiac reporter NKX2.5-green fluorescent protein (GFP),and an Akt-activated EC line (E4(+)ECs). We quantified spontaneous beating rates,synchrony,and coordination between different cardiomyocyte clusters using confocal imaging of Fura Red-detected calcium transients and computer-assisted image analysis. RESULTS After 8 days in culture,94% ± 6% of the NKX2-5GFP(+) cells were beating when hESCs embryonic bodies were plated on E4(+)ECs compared with 34% ± 12.9% for controls consisting of hESCs cultured on BD Matrigel (BD Biosciences) without ECs at Day 11 in culture. The spatial organization of beating areas in cocultures was different. The GFP(+) cardiomyocytes were close to the E4(+)ECs. The average beats/min of the cardiomyocytes in coculture was faster and closer to physiologic heart rates compared with controls (50 ± 14 [n = 13] vs 25 ± 9 [n = 8]; p < 0.05). The coculture with ECs led to synchronized beating relying on the endothelial network,as illustrated by the loss of synchronization upon the disruption of endothelial bridges. CONCLUSIONS The coculturing of differentiating cardiomyocytes with Akt-activated ECs but not EC-conditioned media results in (1) improved efficiency of the cardiomyocyte differentiation protocol and (2) increased maturity leading to better intercellular coupling with improved chronotropy and synchrony.
View Publication
Reference
Park M et al. (SEP 2016)
Scientific reports 6 34111
Exercise protects against methamphetamine-induced aberrant neurogenesis.
While no effective therapy is available for the treatment of methamphetamine (METH)-induced neurotoxicity,aerobic exercise is being proposed to improve depressive symptoms and substance abuse outcomes. The present study focuses on the effect of exercise on METH-induced aberrant neurogenesis in the hippocampal dentate gyrus in the context of the blood-brain barrier (BBB) pathology. Mice were administered with METH or saline by i.p. injections for 5 days with an escalating dose regimen. One set of mice was sacrificed 24 h post last injection of METH,and the remaining animals were either subjected to voluntary wheel running (exercised mice) or remained in sedentary housing (sedentary mice). METH administration decreased expression of tight junction (TJ) proteins and increased BBB permeability in the hippocampus. These changes were preserved post METH administration in sedentary mice and were associated with the development of significant aberrations of neural differentiation. Exercise protected against these effects by enhancing the protein expression of TJ proteins,stabilizing the BBB integrity,and enhancing the neural differentiation. In addition,exercise protected against METH-induced systemic increase in inflammatory cytokine levels. These results suggest that exercise can attenuate METH-induced neurotoxicity by protecting against the BBB disruption and related microenvironmental changes in the hippocampus.
View Publication