Akizu N et al. (MAY 2015)
Nature genetics 47 5 528--34
Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction.
Pediatric-onset ataxias often present clinically as developmental delay and intellectual disability,with prominent cerebellar atrophy as a key neuroradiographic finding. Here we describe a new clinically distinguishable recessive syndrome in 12 families with cerebellar atrophy together with ataxia,coarsened facial features and intellectual disability,due to truncating mutations in the sorting nexin gene SNX14,encoding a ubiquitously expressed modular PX domain-containing sorting factor. We found SNX14 localized to lysosomes and associated with phosphatidylinositol (3,5)-bisphosphate,a key component of late endosomes/lysosomes. Patient-derived cells showed engorged lysosomes and a slower autophagosome clearance rate upon autophagy induction by starvation. Zebrafish morphants for snx14 showed dramatic loss of cerebellar parenchyma,accumulation of autophagosomes and activation of apoptosis. Our results characterize a unique ataxia syndrome due to biallelic SNX14 mutations leading to lysosome-autophagosome dysfunction.
View Publication
(May 2024)
Cell Death & Disease 15 5
Biallelic variants in
CSMD1 (Cub and Sushi Multiple Domains 1) is a well-recognized regulator of the complement cascade,an important component of the innate immune response. CSMD1 is highly expressed in the central nervous system (CNS) where emergent functions of the complement pathway modulate neural development and synaptic activity. While a genetic risk factor for neuropsychiatric disorders,the role of CSMD1 in neurodevelopmental disorders is unclear. Through international variant sharing,we identified inherited biallelic CSMD1 variants in eight individuals from six families of diverse ancestry who present with global developmental delay,intellectual disability,microcephaly,and polymicrogyria. We modeled CSMD1 loss-of-function (LOF) pathogenesis in early-stage forebrain organoids differentiated from CSMD1 knockout human embryonic stem cells (hESCs). We show that CSMD1 is necessary for neuroepithelial cytoarchitecture and synchronous differentiation. In summary,we identified a critical role for CSMD1 in brain development and biallelic CSMD1 variants as the molecular basis of a previously undefined neurodevelopmental disorder.
View Publication
P. A. Terhal et al. (may 2019)
European journal of human genetics : EJHG
Biallelic variants in POLR3GL cause endosteal hyperostosis and oligodontia.
RNA polymerase III (Pol III) is an essential 17-subunit complex responsible for the transcription of small housekeeping RNAs such as transfer RNAs and 5S ribosomal RNA. Biallelic variants in four genes (POLR3A,POLR3B,and POLR1C and POLR3K) encoding Pol III subunits have previously been found in individuals with (neuro-) developmental disorders. In this report,we describe three individuals with biallelic variants in POLR3GL,a gene encoding a Pol III subunit that has not been associated with disease before. Using whole exome sequencing in a monozygotic twin and an unrelated individual,we detected homozygous and compound heterozygous POLR3GL splice acceptor site variants. RNA sequencing confirmed the loss of full-length POLR3GL RNA transcripts in blood samples of the individuals. The phenotypes of the described individuals are mainly characterized by axial endosteal hyperostosis,oligodontia,short stature,and mild facial dysmorphisms. These features largely fit within the spectrum of phenotypes caused by previously described biallelic variants in POLR3A,POLR3B,POLR1C,and POLR3K. These findings further expand the spectrum of POLR3-related disorders and implicate that POLR3GL should be included in genetic testing if such disorders are suspected.
View Publication
(Jul 2025)
Journal of Translational Medicine 23 10247
Bifidobacterium animalis subsp. Lactis BX-BC08 modulates gut microbiota and secretes alpha-Ketoglutaric acid to alleviate MC903-induced atopic dermatitis
ObjectiveBifidobacterium is known to be depleted in patients with atopic dermatitis (AD). This study aims to investigate the potential prophylactic effects of Bifidobacterium animalis subsp. lactis BX-BC08 (B. lactis BX-BC08) in a murine model of AD.DesignThe immunosuppressive and anti-inflammatory effects of BX-BC08 were evaluated in a MC903-induced AD mouse model. Gut microbiota composition was analyzed by metagenomic sequencing,while high-performance liquid chromatography-mass spectrometry (HPLC-MS) was employed to identify anti-inflammatory molecules produced by B. lactis BX-BC08.ResultsBX-BC08 significantly attenuated pro-inflammatory responses,scaling and swelling in the MC903-induced AD like murine model compared to controls. Fecal microbial profiling revealed an enrichment of probiotics and a reduction of pro-inflammatory bacteria in BX-BC08 treated mice. Metabolic analysis of BX-BC08 bacteria culture supernatant and treated mice identified a significant enrichment of alpha-Ketoglutaric acid (AKG). Functional validation in the murine AD model demonstrated that AKG strongly suppressed T helper 2 (Th2)-driven pro-inflammatory responses.ConclusionBX-BC08 mitigates AD-like inflammation by producing the anti-inflammatory metabolite AKG. BX-BC08 could serve as a novel prophylactic agent for AD prevention.Supplementary InformationThe online version contains supplementary material available at 10.1186/s12967-025-06769-9.
View Publication
BiHC, a T-Cell-Engaging Bispecific Recombinant Antibody, Has Potent Cytotoxic Activity Against Her2 Tumor Cells.
Among different cancer immunotherapy approaches,bispecific antibodies (BsAbs) are of great interest due to their ability to recruit immune cells to kill tumor cells directly. Various BsAbs against Her2 tumor cells have been proposed with potent cytotoxic activities. However,most of these formats require extensive processing to obtain heterodimeric bispecific antibodies. In this study,we describe a bispecific antibody,BiHC (bispecific Her2-CD3 antibody),constructed with a single-domain anti-Her2 and a single-chain Fv (variable fragment) of anti-CD3 in an IgG-like format. In contrast to most IgG-like BsAbs,the two arms in BiHC have different molecular weights,making it easier to separate hetero- or homodimers. BiHC can be expressed in Escherichia coli and purified via Protein A affinity chromatography. The purified BiHC can recruit T cells and induce specific cytotoxicity of Her2-expressing tumor cells in vitro. The BiHC can also efficiently inhibit the tumor growth in vivo. Thus,BiHC is a promising candidate for the treatment of Her2-positive cancers.
View Publication
Masuda A et al. (JUL 2002)
Bioscience,biotechnology,and biochemistry 66 7 1615--7
Binding selectivity of conformationally restricted analogues of (-)-indolactam-V to the C1 domains of protein kinase C isozymes.
Two conformationally restricted analogues of (-)-indolactam-V (1) (cis and trans amides) were examined for their binding selectivity to the synthetic C1 peptides of all protein kinase C (PKC) isozymes. Although the binding constants of the cis amide-restricted analogue (2) were equal to those of 1,the trans amide-restricted analogue (3) bound significantly only to the novel PKC (delta,epsilon,eta,theta) isozymes.
View Publication
Guan BX et al. (MAY 2014)
IEEE/ACM transactions on computational biology and bioinformatics / IEEE,ACM 11 3 604--611
Bio-Driven Cell Region Detection in Human Embryonic Stem Cell Assay.
This paper proposes a bio-driven algorithm that detects cell regions automatically in the human embryonic stem cell (hESC) images obtained using a phase contrast microscope. The algorithm uses both statistical intensity distributions of foreground/hESCs and background/substrate as well as cell property for cell region detection. The intensity distributions of foreground/hESCs and background/substrate are modeled as a mixture of two Gaussians. The cell property is translated into local spatial information. The algorithm is optimized by parameters of the modeled distributions and cell regions evolve with the local cell property. The paper validates the method with various videos acquired using different microscope objectives. In comparison with the state-of-the-art methods,the proposed method is able to detect the entire cell region instead of fragmented cell regions. It also yields high marks on measures such as Jacard similarity,Dice coefficient,sensitivity and specificity. Automated detection by the proposed method has the potential to enable fast quantifiable analysis of hESCs using large data sets which are needed to understand dynamic cell behaviors.
View Publication
Park H-JJ et al. (MAY 2015)
Biomaterials 50 1 127--139
Bio-inspired oligovitronectin-grafted surface for enhanced self-renewal and long-term maintenance of human pluripotent stem cells under feeder-free conditions.
Current protocols for human pluripotent stem cell (hPSC) expansion require feeder cells or matrices from animal sources that have been the major obstacle to obtain clinical grade hPSCs due to safety issues,difficulty in quality control,and high expense. Thus,feeder-free,chemically defined synthetic platforms have been developed,but are mostly confined to typical polystyrene culture plates. Here,we report a chemically defined,material-independent,bio-inspired surface coating allowing for feeder-free expansion and maintenance of self-renewal and pluripotency of hPSCs on various polymer substrates and devices. Polydopamine (pDA)-mediated immobilization of vitronectin (VN) peptides results in surface functionalization of VN-dimer/pDA conjugates. The engineered surfaces facilitate adhesion,proliferation,and colony formation of hPSCs via enhanced focal adhesion,cell-cell interaction,and biophysical signals,providing a chemically defined,xeno-free culture system for clonal expansion and long-term maintenance of hPSCs. This surface engineering enables the application of clinically-relevant hPSCs to a variety of biomedical systems such as tissue-engineering scaffolds and medical devices.
View Publication
Katzenellenbogen BS et al. (JAN 1984)
Cancer research 44 1 112--9
Bioactivities, estrogen receptor interactions, and plasminogen activator-inducing activities of tamoxifen and hydroxy-tamoxifen isomers in MCF-7 human breast cancer cells.
Tamoxifen is used widely in the treatment of endocrine-responsive breast cancers in humans. Studies were undertaken to examine the biological character (estrogenic-antiestrogenic properties) and estrogen receptor (ER) interaction of the cis- and trans-isomers of tamoxifen and hydroxytamoxifen in MCF-7 human breast cancer cells. For each compound,the following parameters were monitored: affinity for ER and effects on cellular ER levels; stimulation-inhibition of cell growth,plasminogen activator activity,and cellular progesterone receptor levels; and isomer interconversion and metabolism in vitro. The relative binding affinities of the compounds cis-tamoxifen,trans-tamoxifen,cis-hydroxytamoxifen,and trans-hydroxytamoxifen for cytosol ER were 0.3,2.5,1.8,and 310%,respectively,in which the affinity of estradiol is considered 100%. cis-Tamoxifen behaved as a weak estrogen agonist in all assays,while trans-tamoxifen was an effective estrogen antagonist. cis-Tamoxifen behaved like estradiol in stimulating MCF-7 cell growth and increasing plasminogen activator activity and cellular progesterone receptor content,although very much higher concentrations of cis-tamoxifen (10(-6) M) were needed to achieve the levels of stimulation observed with 10(-10) M estradiol. trans-Tamoxifen and trans-hydroxytamoxifen suppressed cell growth,inhibited plasminogen activator activity of control cells,and suppressed estradiol-stimulation of plasminogen activator activity,and they evoked minimal increases in cellular progesterone receptor levels. trans-Hydroxytamoxifen had a 100-fold increased affinity for ER and was approximately 100-times more potent than was trans-tamoxifen in suppressing cell growth and plasminogen activator activity. cis-Hydroxytamoxifen behaved as an estrogen antagonist,suppressing cell growth and plasminogen activator activity,and it elicited submaximal increases in progesterone receptor levels. This apparently paradoxical behavior of cis-hydroxytamoxifen was shown to be due to the fact that the cis- and trans-hydroxytamoxifens readily undergo isomeric interconversion upon exposure to our cell culture conditions,resulting in substantial accumulation of the higher-affinity trans-hydroxytamoxifen in the nuclear ER fraction of cells. In contrast to the facile interconversion of the hydroxytamoxifen isomers,there is no metabolism or interconversion of the parent compounds cis- and trans-tamoxifen in vitro. Hence,by the criteria we have used,the biological characters of trans-tamoxifen and trans-hydroxytamoxifen are similar,the major difference being the approximately 100-fold enhanced potency of the hydroxylated form. In contrast,cis-t
View Publication
Buffington DA et al. (JAN 2012)
Cell medicine 4 1 33--43
Bioartificial Renal Epithelial Cell System (BRECS): A Compact, Cryopreservable Extracorporeal Renal Replacement Device.
Renal cell therapy has shown clinical efficacy in the treatment of acute renal failure (ARF) and promise for treatment of end-stage renal disease (ESRD) by supplementing conventional small solute clearance (hemodialysis or hemofiltration) with endocrine and metabolic function provided by cells maintained in an extracorporeal circuit. A major obstacle in the widespread adoption of this therapeutic approach is the lack of a cryopreservable system to enable distribution,storage,and therapeutic use at point of care facilities. This report details the design,fabrication,and assessment of a Bioartificial Renal Epithelial Cell System (BRECS),the first all-in-one culture vessel,cryostorage device,and cell therapy delivery system. The BRECS was loaded with up to 20 cell-seeded porous disks,which were maintained by perfusion culture. Once cells reached over 5 A- 10(6) cells/disk for a total therapeutic dose of approximately 10(8) cells,the BRECS was cryopreserved for storage at -80°C or -140°C. The BRECS was rapidly thawed,and perfusion culture was resumed. Near precryopreservation values of cell viability,metabolic activity,and differentiated phenotype of functional renal cells were confirmed post-reconstitution. This technology could be extended to administer other cell-based therapies where metabolic,regulatory,or secretion functions can be leveraged in an immunoisolated extracorporeal circuit.
View Publication
Kesarwani K et al. (APR 2013)
Asian Pacific journal of tropical biomedicine 3 4 253--66
Bioavailability enhancers of herbal origin: an overview.
Recently,the use of herbal medicines has been increased all over the world due to their therapeutic effects and fewer adverse effects as compared to the modern medicines. However,many herbal drugs and herbal extracts despite of their impressive in-vitro findings demonstrates less or negligible in-vivo activity due to their poor lipid solubility or improper molecular size,resulting in poor absorption and hence poor bioavailability. Nowadays with the advancement in the technology,novel drug delivery systems open the door towards the development of enhancing bioavailability of herbal drug delivery systems. For last one decade many novel carriers such as liposomes,microspheres,nanoparticles,transferosomes,ethosomes,lipid based systems etc. have been reported for successful modified delivery of various herbal drugs. Many herbal compounds including quercetin,genistein,naringin,sinomenine,piperine,glycyrrhizin and nitrile glycoside have demonstrated capability to enhance the bioavailability. The objective of this review is to summarize various available novel drug delivery technologies which have been developed for delivery of drugs (herbal),and to achieve better therapeutic response. An attempt has also been made to compile a profile on bioavailability enhancers of herbal origin with the mechanism of action (wherever reported) and studies on improvement in drug bioavailability,exhibited particularly by natural compounds.
View Publication
Trowbridge IS et al. (MAR 1982)
Immunogenetics 15 3 299--312
Biochemical characterization and cellular distribution of a polymorphic, murine cell-surface glycoprotein expressed on lymphoid tissues.
A murine leukocyte surface glycoprotein (Mr = 95 000) has been defined by means of xenogeneic monoclonal antibodies. In normal hematopoietic tissues,the glycoprotein is found in highest amounts in the bone marrow. Flow cytometric analysis shows that essentially all bone-marrow cells express the glycoprotein and that it is a major component of a subpopulation of cells containing predominantly granulocytic precursors. In contrast,only about 5 percent of thymocytes express sufficient glycoprotein to be detected by flow cytometric analysis,although under stringent conditions up to 20 percent of thymocytes are susceptible to complement-mediated cytotoxicity using a monoclonal antibody against the glycoprotein. Functional assays showed that both prothymocytes and colony forming unit-spleen express the glycoprotein which is broadly distributed on murine hematopoietic tumor cell lines. However,although some Thy-1+ (T) cell lymphomas express large amounts of the glycoprotein,others do not express detectable quantities of the molecule. The glycoprotein is not restricted to hematopoietic cells and can be detected on lung,kidney,brain,and liver as well as cultured fibroblasts. Monoclonal antibodies against the glycoprotein cross-react with an antigen present on human cells. As described in the accompanying paper,the glycoprotein exists in two antithetical allelic forms and we show that it is identical to a polymorphic surface molecule independently characterized by Colombatti and co-workers.
View Publication