An ID2-dependent mechanism for VHL inactivation in cancer.
Mechanisms that maintain cancer stem cells are crucial to tumour progression. The ID2 protein supports cancer hallmarks including the cancer stem cell state. HIFα transcription factors,most notably HIF2α (also known as EPAS1),are expressed in and required for maintenance of cancer stem cells (CSCs). However,the pathways that are engaged by ID2 or drive HIF2α accumulation in CSCs have remained unclear. Here we report that DYRK1A and DYRK1B kinases phosphorylate ID2 on threonine 27 (Thr27). Hypoxia downregulates this phosphorylation via inactivation of DYRK1A and DYRK1B. The activity of these kinases is stimulated in normoxia by the oxygen-sensing prolyl hydroxylase PHD1 (also known as EGLN2). ID2 binds to the VHL ubiquitin ligase complex,displaces VHL-associated Cullin 2,and impairs HIF2α ubiquitylation and degradation. Phosphorylation of Thr27 of ID2 by DYRK1 blocks ID2-VHL interaction and preserves HIF2α ubiquitylation. In glioblastoma,ID2 positively modulates HIF2α activity. Conversely,elevated expression of DYRK1 phosphorylates Thr27 of ID2,leading to HIF2α destabilization,loss of glioma stemness,inhibition of tumour growth,and a more favourable outcome for patients with glioblastoma.
View Publication
Reference
Lee K et al. (JAN 2013)
Neuron 77 1 99--114
Mossy Fiber-CA3 Synapses Mediate Homeostatic Plasticity in Mature Hippocampal Neurons
Network activity homeostatically alters synaptic efficacy to constrain neuronal output. However,it is unclear how such compensatory adaptations coexist with synaptic information storage,especially in established networks. Here,we report that in mature hippocampal neurons in vitro,network activity preferentially regulated excitatory synapses within the proximal dendrites of CA3 neurons. These homeostatic synapses exhibited morphological,functional,and molecular signatures of the specialized contacts between mossy fibers of dentate granule cells and thorny excrescences (TEs) of CA3 pyramidal neurons. In vivo TEs were also selectively and bidirectionally altered by chronic activity changes. TE formation required presynaptic synaptoporin and was suppressed by the activity-inducible kinase,Plk2. These results implicate the mossy fiber-TE synapse as an independently tunable gain control locus that permits efficacious homeostatic adjustment of mossy fiber-CA3 synapses,while preserving synaptic weights that may encode information elsewhere within the mature hippocampal circuit.
View Publication
Reference
Leal G et al. (OCT 2014)
PLoS ONE 9 10 e108175
Neuronal Activity Induces Synaptic Delivery of hnRNP A2/B1 by a BDNF-Dependent Mechanism in Cultured Hippocampal Neurons
Dendritic protein synthesis plays a critical role in several forms of synaptic plasticity,including BDNF (brain-derived neurotrophic factor)-mediated long-term synaptic potentiation (LTP). Dendritic transcripts are typically transported in a repressed state as components of large ribonucleoprotein complexes,and then translated upon stimulation at,or in the vicinity,of activated synapses. Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) is a trans-acting factor involved in dendritic mRNA trafficking,but how the distribution of the protein in dendrites is regulated has not been characterized. Here we found that a fraction of hnRNP A2/B1 is present at the synapse under resting conditions in cultured hippocampal neurons. Accordingly,this ribonucleoprotein was detected in free mRNP,monosomal,and polyribosomal fractions obtained from synaptoneurosomes. Neuronal activity and BDNF treatment increased hnRNP A2/B1 protein levels in the cell body and dendritic compartments,and induced the delivery of this protein to synaptic sites. The activity-dependent accumulation of hnRNP A2/B1 at the synapse required,at least in part,the activation of TrkB receptors,presumably by BDNF. This neurotrophin also upregulated the hnRNP A2/B1 mRNA in the soma but was without effect on the abundance of neuritic hnRNP A2/B1 transcripts. These results show that the distribution of hnRNP A2/B1 is regulated by BDNF and by neuronal activity,an effect that may have a role in BDNF-induced synaptic plasticity events.
View Publication
Reference
Lazzaroni F et al. (NOV 2016)
Scientific reports 6 37201
Intronless WNT10B-short variant underlies new recurrent allele-specific rearrangement in acute myeloid leukaemia.
Defects in the control of Wnt signaling have emerged as a recurrent mechanism involved in cancer pathogenesis and acute myeloid leukaemia (AML),including the hematopoietic regeneration-associated WNT10B in AC133bright leukaemia cells,although the existence of a specific mechanism remains unproven. We have obtained evidences for a recurrent rearrangement,which involved the WNT10B locus (WNT10BR) within intron 1 (IVS1) and flanked at the 5' by non-human sequences whose origin remains to be elucidated; it also expressed a transcript variant (WNT10BIVS1) which was mainly detected in a cohort of patients with intermediate/unfavorable risk AML. We also identified in two separate cases,affected by AML and breast cancer respectively,a genomic transposable short form of human WNT10B (ht-WNT10B). The intronless ht-WNT10B resembles a long non-coding RNA (lncRNA),which suggests its involvement in a non-random microhomology-mediated recombination generating the rearranged WNT10BR. Furthermore,our studies supports an autocrine activation primed by the formation of WNT10B-FZD4/5 complexes in the breast cancer MCF7 cells that express the WNT10BIVS1. Chemical interference of WNT-ligands production by the porcupine inhibitor IWP-2 achieved a dose-dependent suppression of the WNT10B-FZD4/5 interactions. These results present the first evidence for a recurrent rearrangement promoted by a mobile ht-WNT10B oncogene,as a relevant mechanism for Wnt involvement in human cancer.
View Publication
Reference
Lawn S et al. (FEB 2015)
The Journal of biological chemistry 290 6 3814--24
Neurotrophin signaling via TrkB and TrkC receptors promotes the growth of brain tumor-initiating cells.
Neurotrophins and their receptors are frequently expressed in malignant gliomas,yet their functions are largely unknown. Previously,we have shown that p75 neurotrophin receptor is required for glioma invasion and proliferation. However,the role of Trk receptors has not been examined. In this study,we investigated the importance of TrkB and TrkC in survival of brain tumor-initiating cells (BTICs). Here,we show that human malignant glioma tissues and also tumor-initiating cells isolated from fresh human malignant gliomas express the neurotrophin receptors TrkB and TrkC,not TrkA,and they also express neurotrophins NGF,BDNF,and neurotrophin 3 (NT3). Specific activation of TrkB and TrkC receptors by ligands BDNF and NT3 enhances tumor-initiating cell viability through activation of ERK and Akt pathways. Conversely,TrkB and TrkC knockdown or pharmacologic inhibition of Trk signaling decreases neurotrophin-dependent ERK activation and BTIC growth. Further,pharmacological inhibition of both ERK and Akt pathways blocked BDNF,and NT3 stimulated BTIC survival. Importantly,attenuation of BTIC growth by EGFR inhibitors could be overcome by activation of neurotrophin signaling,and neurotrophin signaling is sufficient for long term BTIC growth as spheres in the absence of EGF and FGF. Our results highlight a novel role for neurotrophin signaling in brain tumor and suggest that Trks could be a target for combinatorial treatment of malignant glioma.
View Publication
Reference
Lavasani M et al. (APR 2014)
The Journal of clinical investigation 124 4 1745--56
Human muscle-derived stem/progenitor cells promote functional murine peripheral nerve regeneration.
Peripheral nerve injuries and neuropathies lead to profound functional deficits. Here,we have demonstrated that muscle-derived stem/progenitor cells (MDSPCs) isolated from adult human skeletal muscle (hMDSPCs) can adopt neuronal and glial phenotypes in vitro and ameliorate a critical-sized sciatic nerve injury and its associated defects in a murine model. Transplanted hMDSPCs surrounded the axonal growth cone,while hMDSPCs infiltrating the regenerating nerve differentiated into myelinating Schwann cells. Engraftment of hMDSPCs into the area of the damaged nerve promoted axonal regeneration,which led to functional recovery as measured by sustained gait improvement. Furthermore,no adverse effects were observed in these animals up to 18 months after transplantation. Following hMDSPC therapy,gastrocnemius muscles from mice exhibited substantially less muscle atrophy,an increase in muscle mass after denervation,and reorganization of motor endplates at the postsynaptic sites compared with those from PBS-treated mice. Evaluation of nerve defects in animals transplanted with vehicle-only or myoblast-like cells did not reveal histological or functional recovery. These data demonstrate the efficacy of hMDSPC-based therapy for peripheral nerve injury and suggest that hMDSPC transplantation has potential to be translated for use in human neuropathies.
View Publication
Reference
Lama G et al. (FEB 2016)
Journal of Neuropathology & Experimental Neurology 75 2 134--147
Progenitor/Stem Cell Markers in Brain Adjacent to Glioblastoma: GD3 Ganglioside and NG2 Proteoglycan Expression
Characterization of tissue surrounding glioblastoma (GBM) is a focus for translational research because tumor recurrence invariably occurs in this area. We investigated the expression of the progenitor/stem cell markers GD3 ganglioside and NG2 proteoglycan in GBM,peritumor tissue (brain adjacent to tumor,BAT) and cancer stem-like cells (CSCs) isolated from GBM (GCSCs) and BAT (PCSCs). GD3 and NG2 immunohistochemistry was performed in paired GBM and BAT specimens from 40 patients. Double-immunofluorescence was carried out to characterize NG2-positive cells of vessel walls. GD3 and NG2 expression was investigated in GCSCs and PCSCs whose tumorigenicity was also evaluated in Scid/bg mice. GD3 and NG2 expression was higher in tumor tissue than in BAT. NG2 decreased as the distance from tumor margin increased,regardless of the tumor cell presence,whereas GD3 correlated with neoplastic infiltration. In BAT,NG2 was coexpressed with a-smooth muscle actin (a-SMA) in pericytes and with nestin in the endothelium. Higher levels of NG2 mRNA and protein were found in GCSCs while GD3 synthase was expressed at similar levels in the 2 CSC populations. PCSCs had lower tumorigenicity than GCSCs. These data suggest the possible involvement of GD3 and NG2 in pre/pro-tumorigenic events occurring in the complex microenvironment of the tissue surrounding GBM.
View Publication
Reference
Lam RS et al. ( 2017)
PloS one 12 1 e0169506
Functional Maturation of Human Stem Cell-Derived Neurons in Long-Term Cultures.
Differentiated neurons can be rapidly acquired,within days,by inducing stem cells to express neurogenic transcription factors. We developed a protocol to maintain long-term cultures of human neurons,called iNGNs,which are obtained by inducing Neurogenin-1 and Neurogenin-2 expression in induced pluripotent stem cells. We followed the functional development of iNGNs over months and they showed many hallmark properties for neuronal maturation,including robust electrical and synaptic activity. Using iNGNs expressing a variant of channelrhodopsin-2,called CatCh,we could control iNGN activity with blue light stimulation. In combination with optogenetic tools,iNGNs offer opportunities for studies that require precise spatial and temporal resolution. iNGNs developed spontaneous network activity,and these networks had excitatory glutamatergic synapses,which we characterized with single-cell synaptic recordings. AMPA glutamatergic receptor activity was especially dominant in postsynaptic recordings,whereas NMDA glutamatergic receptor activity was absent from postsynaptic recordings but present in extrasynaptic recordings. Our results on long-term cultures of iNGNs could help in future studies elucidating mechanisms of human synaptogenesis and neurotransmission,along with the ability to scale-up the size of the cultures.
View Publication
Reference
Kong C-W et al. (MAR 2017)
Stem cell research 19 76--81
Increasing the physical size and nucleation status of human pluripotent stem cell-derived ventricular cardiomyocytes by cell fusion.
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) provide an unlimited source of donor cells for potential cardiac regenerative therapies. However,hPSC-CMs are immature. For instance,hPSC-CMs are only 1/10 of the physical size of their adult counterparts; the majority are mono- rather than bi- or multi-nucleated,which is an evolutionary adaptive feature in metabolically active cells such as adult CMs. Here,we attempted to increase the physical size and nucleation status of hPSC-derived ventricular (V) cardiomyocytes (hPSC-VCMs) using chemically-induced cell fusion,and examined the subsequent functional effects. Polyethylene glycol (PEG) was employed to fuse a 1:1 mixture of lentiviral vectors LV-MLC2v-GFP- or -tdTomato-labeled hPSC-VCMs,such that hPSC-VCMs fused syncytia (FS) were identified as doubly GFP(+)/tdTomato(+) multi-nucleated cells. These microscopically-identified FS were doubled in size as gauged by their capacitance when compared to the control mononucleated hPSC-VCMs using patch-clamp analysis. Reduced automaticity or action potential (AP) firing rate and moderately prolonged AP duration were observed in FS from day 6 post-fusion induction. However,Ca(2+) handling,mitochondrial biogenesis and the extent of apoptosis were not significantly altered. We conclude that larger,multi-nucleated hPSC-VCMs FS can be created by chemically-induced cell fusion but global maturation requires additional triggering cues.
View Publication
Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR
Embryonal tumors with multilayered rosettes (ETMRs) are rare,deadly pediatric brain tumors characterized by high-level amplification of the microRNA cluster C19MC. We performed integrated genetic and epigenetic analyses of 12 ETMR samples and identified,in all cases,C19MC fusions to TTYH1 driving expression of the microRNAs. ETMR tumors,cell lines and xenografts showed a specific DNA methylation pattern distinct from those of other tumors and normal tissues. We detected extreme overexpression of a previously uncharacterized isoform of DNMT3B originating at an alternative promoter that is active only in the first weeks of neural tube development. Transcriptional and immunohistochemical analyses suggest that C19MC-dependent DNMT3B deregulation is mediated by RBL2,a known repressor of DNMT3B. Transfection with individual C19MC microRNAs resulted in DNMT3B upregulation and RBL2 downregulation in cultured cells. Our data suggest a potential oncogenic re-engagement of an early developmental program in ETMR via epigenetic alteration mediated by an embryonic,brain-specific DNMT3B isoform.
View Publication
On-demand optogenetic activation of human stem-cell-derived neurons
The widespread application of human stem-cell-derived neurons for functional studies is impeded by complicated differentiation protocols,immaturity,and deficient optogene expression as stem cells frequently lose transgene expression over time. Here we report a simple but precise Cre-loxP-based strategy for generating conditional,and thereby stable,optogenetic human stem-cell lines. These cells can be easily and efficiently differentiated into functional neurons,and optogene expression can be triggered by administering Cre protein to the cultures. This conditional expression system may be applied to stem-cell-derived neurons whenever timed transgene expression could help to overcome silencing at the stem-cell level.
View Publication
Reference
Kim MY et al. (MAR 2017)
Oncology letters 13 3 1767--1774
Accumulation of low-dose BIX01294 promotes metastatic potential of U251 glioblastoma cells.
BIX01294 (Bix) is known to be a euchromatic histone-lysine N-methyltransferase 2 inhibitor and treatment with Bix suppresses cancer cell survival and proliferation. In the present study,it was observed that sequential treatment with low-dose Bix notably increases glioblastoma cell migration and metastasis. It was demonstrated that U251 cells sequentially treated with low-dose Bix exhibited induced characteristic changes in critical epithelial-mesenchymal transition (EMT) markers,including E-cadherin,N-cadherin,β-catenin and zinc finger protein SNAI2. Notably,sequential treatment with Bix also increased the expression of cancer stem cell-associated markers,including sex determining region Y-box 2,octamer-binding transcription factor 4 and cluster of differentiation 133. Neurosphere formation was significantly enhanced in cells sequentially treated with Bix,compared with control cells (control: P=0.011; single treatment of Bix,P=0.045). The results of the present study suggest that accumulation of low-dose Bix enhanced the migration and metastatic potential of glioblastoma cells by regulating EMT-associated gene expression,which may be the cause of the altered properties of glioblastoma stem cells.
View Publication