Directed differentiation of stem cells offers a scalable solution to the need for human cell models recapitulating islet biology and T2D pathogenesis. We profiled mRNA expression at 6 stages of an induced pluripotent stem cell (iPSC) model of endocrine pancreas development from 2 donors,and characterized the distinct transcriptomic profiles associated with each stage. Established regulators of endodermal lineage commitment,such as SOX17 (log2 fold change [FC] compared to iPSCs = 14.2,p-value = 4.9 × 10(-5)) and the pancreatic agenesis gene GATA6 (log2 FC = 12.1,p-value = 8.6 × 10(-5)),showed transcriptional variation consistent with their known developmental roles. However,these analyses highlighted many other genes with stage-specific expression patterns,some of which may be novel drivers or markers of islet development. For example,the leptin receptor gene,LEPR,was most highly expressed in published data from in vivo-matured cells compared to our endocrine pancreas-like cells (log2 FC = 5.5,p-value = 2.0 × 10(-12)),suggesting a role for the leptin pathway in the maturation process. Endocrine pancreas-like cells showed significant stage-selective expression of adult islet genes,including INS,ABCC8,and GLP1R,and enrichment of relevant GO-terms (e.g. insulin secretion"; odds ratio = 4.2�
View Publication