CD8+ memory T (TM) cells play a critical role in immune defense against infection. Two common $\gamma$-chain family cytokines,IL-2 and IL-7,although triggering the same mTORC1-S6K pathway,distinctly induce effector T (TE) cells and TM cells,respectively,but the underlying mechanism(s) remains elusive. In this study,we generated IL-7R-/and AMPK$\alpha$1-knockout (KO)/OTI mice. By using genetic and pharmaceutical tools,we demonstrate that IL-7 deficiency represses expression of FOXO1,TCF1,p-AMPK$\alpha$1 (T172),and p-ULK1 (S555) and abolishes T cell memory differentiation in IL-7R KO T cells after Listeria monocytogenesis rLmOVA infection. IL-2- and IL-7-stimulated strong and weak S6K (IL-2/S6Kstrong and IL-7/S6Kweak) signals control short-lived IL-7R-CD62L-KLRG1+ TE and long-term IL-7R+CD62L+KLRG1- TM cell formations,respectively. To assess underlying molecular pathway(s),we performed flow cytometry,Western blotting,confocal microscopy,and Seahorse assay analyses by using the IL-7/S6Kweak-stimulated TM (IL-7/TM) and the control IL-2/S6Kstrong-stimulated TE (IL-2/TE) cells. We determine that the IL-7/S6Kweak signal activates transcriptional FOXO1,TCF1,and Id3 and metabolic p-AMPK$\alpha$1,p-ULK1,and ATG7 molecules in IL-7/TM cells. IL-7/TM cells upregulate IL-7R and CD62L,promote mitochondria biogenesis and fatty acid oxidation metabolism,and show long-term cell survival and functional recall responses. Interestingly,AMPK$\alpha$1 deficiency abolishes the AMPK$\alpha$1 but maintains the FOXO1 pathway and induces a metabolic switch from fatty acid oxidation to glycolysis in AMPK$\alpha$1 KO IL-7/TM cells,leading to loss of cell survival and recall responses. Taken together,our data demonstrate that IL-7-stimulated weak strength of mTORC1-S6K signaling controls T cell memory via activation of transcriptional FOXO1-TCF1-Id3 and metabolic AMPK$\alpha$1-ULK1-ATG7 pathways. This (to our knowledge) novel finding provides a new mechanism for a distinct IL-2/IL-7 stimulation model in T cell memory and greatly impacts vaccine development.
View Publication