Lung transplantation is the primary treatment for end-stage lung diseases. However,ischemia-reperfusion injury (IRI) significantly impacts transplant outcomes. 4-Octyl itaconate (4-OI) has shown potential in mitigating organ IRI,although its effects in lung transplantation require further exploration. BEAS-2B cells were used to model transplantation,assessing the effects of 4-OI through viability,apoptosis,and ROS assays. qRT-PCR analyzed cytokine transcription post-cold ischemia/reperfusion (CI/R). RNA sequencing and Gene Ontology analysis elucidated 4-OI’s mechanisms of action,confirmed by Western blotting. ALI-airway and lung transplantation organoid models evaluated improvements in bronchial epithelial morphology and function due to 4-OI. ELISA measured IL-6 and IL-8 levels. Rat models of extended cold preservation and non-heart-beating transplantation assessed 4-OI’s impact on lung function,injury,and inflammation. Our findings indicate that 4-OI (100 µM) during cold preservation effectively maintained cell viability,decreased apoptosis,and reduced ROS production in BEAS-2B cells under CI/R conditions. It also downregulated pro-inflammatory cytokine transcription,including IL1B,IL6,and TNF. Inhibition of Nrf2 partially reversed these protective effects. In cold preservation solutions,4-OI upregulated Nrf2 target genes such as NQO1,HMOX1,and SLC7A11. In ALI airway models,4-OI enhanced bronchial epithelial barrier integrity and ciliary beat function after CI/R. In rat models,4-OI administration improved lung function and reduced pulmonary edema,tissue injury,apoptosis,and systemic inflammation following extended cold preservation or non-heart-beating lung transplantation. Incorporating 4-OI into cold preservation solutions appears promising for alleviating CI/R-induced bronchial epithelial injury and enhancing lung transplant outcomes via Nrf2 pathway activation. The online version contains supplementary material available at 10.1186/s12931-025-03151-7.
View Publication