Anacardic acid and thyroid hormone enhance cardiomyocytes production from undifferentiated mouse ES cells along functionally distinct pathways.
The epigenetics of early commitment to embryonal cardiomyocyte is poorly understood. In this work,we compared the effect of thyroid hormone and that of anacardic acid,a naturally occurring histone acetylase inhibitor,or both in combination,on mouse embryonic stem cells (mES) differentiating into embryonal cardiomyocyte by embryoid bodies (EBs) formation. Although the results indicated that anacardic acid (AA) and thyroid hormone were both efficient in promoting cardiomyocyte differentiation,we noticed that a transient exposure of mES to AA alone was sufficient to enlarge the beating areas of EBs compared to those of untreated controls. This effect was associated with changes in the chromatin structure at the promoters of specific cardiomyogenic genes. Among them,a rapid induction of the transcription factor Castor 1 (CASZ1),important for cardiomyocytes differentiation and maturation during embryonic development,was observed in the presence of AA. In contrast,thyroid hormone (T 3) was more effective in stimulating spontaneous firing,thus suggesting a role in the production of a population of cardiomyocyte with pacemaker properties. In conclusion,AA and thyroid hormone both enhanced cardiomyocyte formation along in apparently distinct pathways.
View Publication
产品类型:
产品号#:
产品名:
文献
Levi B et al. (DEC 2012)
Proceedings of the National Academy of Sciences of the United States of America 109 50 20379--84
In vivo directed differentiation of pluripotent stem cells for skeletal regeneration.
Pluripotent cells represent a powerful tool for tissue regeneration,but their clinical utility is limited by their propensity to form teratomas. Little is known about their interaction with the surrounding niche following implantation and how this may be applied to promote survival and functional engraftment. In this study,we evaluated the ability of an osteogenic microniche consisting of a hydroxyapatite-coated,bone morphogenetic protein-2-releasing poly-L-lactic acid scaffold placed within the context of a macroenvironmental skeletal defect to guide in vivo differentiation of both embryonic and induced pluripotent stem cells. In this setting,we found de novo bone formation and participation by implanted cells in skeletal regeneration without the formation of a teratoma. This finding suggests that local cues from both the implanted scaffold/cell micro- and surrounding macroniche may act in concert to promote cellular survival and the in vivo acquisition of a terminal cell fate,thereby allowing for functional engraftment of pluripotent cells into regenerating tissue.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Liu L et al. (AUG 2014)
Biomaterials 35 24 6259--6267
Nanofibrous gelatin substrates for long-term expansion of human pluripotent stem cells.
Nanofibrous gelatin substrates are suited for long-term expansion of human pluripotent stem cells (hPSCs) under feeder- and serum-free culture conditions. A combinatorial library with different sets of processing parameters was established to assess the culture performance of hPSCs on nanofibrous substrates in terms of cell adhesion and growth rate,using Matrigel as control. Then,the optimal conditions were applied to long-term expansion of hPSCs with several cell lines,showing a maintained pluripotency over more than 20 passages without introducing any abnormal chromosome. In addition,this approach allowed us to avoid enzymatic disassociation and mechanic cutting during passages,thereby promoting a better hPSC culture and long-term expansion. ?? 2014 Elsevier Ltd.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Joulia R et al. (JAN 2015)
Nature communications 6 6174
Mast cells form antibody-dependent degranulatory synapse for dedicated secretion and defence.
Mast cells are tissue-resident immune cells that play a key role in inflammation and allergy. Here we show that interaction of mast cells with antibody-targeted cells induces the polarized exocytosis of their granules resulting in a sustained exposure of effector enzymes,such as tryptase and chymase,at the cell-cell contact site. This previously unidentified mast cell effector mechanism,which we name the antibody-dependent degranulatory synapse (ADDS),is triggered by both IgE- and IgG-targeted cells. ADDSs take place within an area of cortical actin cytoskeleton clearance in the absence of microtubule organizing centre and Golgi apparatus repositioning towards the stimulating cell. Remarkably,IgG-mediated degranulatory synapses also occur upon contact with opsonized Toxoplasma gondii tachyzoites resulting in tryptase-dependent parasite death. Our results broaden current views of mast cell degranulation by revealing that human mast cells form degranulatory synapses with antibody-targeted cells and pathogens for dedicated secretion and defence.
View Publication
产品类型:
产品号#:
09600
09650
60012
60012FI.1
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
抗人CD32抗体, 克隆号IV.3
抗人CD32抗体,克隆IV.3,FITC
文献
Aikawa N et al. ( 2015)
Biological & pharmaceutical bulletin 38 7 1070--1075
A Simple Protocol for the Myocardial Differentiation of Human iPS Cells.
We have developed a simple protocol for inducing the myocardial differentiation of human induced pluripotent stem (iPS) cells. Human iPS cell-derived embryonic bodies (EBs) were treated with a combination of activin-A,bone morphogenetic protein-4 and wnt-3a for one day in serum-free suspension culture,and were subsequently treated with noggin for three days. Thereafter,the EBs were subjected to adherent culture in media with 5% serum. All EBs were differentiated into spontaneously beating EBs,which were identified by the presence of striated muscles in transmission electron microscopy and the expression of the specific cardiomyocyte markers,NKX2-5 and TNNT2. The beating rate of the beating EBs was decreased by treatment with a rapidly activating delayed rectifier potassium current (Ikr) channel blocker,E-4031,an Ikr trafficking inhibitor,pentamidin,and a slowly activating delayed rectifier potassium current (Iks) channel blocker,chromanol 293B,and was increased by treatment with a beta-receptor agonist,isoproterenol. At a low concentration,verapamil,a calcium channel blocker,increased the beating rate of the beating EBs,while a high concentration decreased this rate. These findings suggest that the spontaneously beating EBs were myocardial cell clusters. This simple protocol for myocardial differentiation would be useful in providing a sufficient number of the beating myocardial cell clusters for studies requiring human myocardium.
View Publication
产品类型:
产品号#:
07923
36254
05893
85850
85857
产品名:
Dispase (1 U/mL)
DMEM/F-12 with 15 mM HEPES
AggreWell™ EB形成培养基
mTeSR™1
mTeSR™1
文献
Li Z et al. (FEB 2009)
Journal of cellular biochemistry 106 2 194--9
Transplantation of human embryonic stem cell-derived endothelial cells for vascular diseases.
Using endothelial cells for therapeutic angiogenesis/vasculogenesis of ischemia diseases has led to exploring human embryonic stem cells (hESCs) as a potentially unlimited source for endothelial progenitor cells. With their capacity for self-renewal and pluripotency,hESCs and their derived endothelial cells (hESC-ECs) may be more advantageous than other endothelial cells obtained from diseased populations. However,hESC-ECs' poor differentiation efficiency and poorly characterized in vivo function after transplantation present significant challenges for their future clinical application. This review will focus on the differentiation pathways of hESCs and their therapeutic potential for vascular diseases,as well as the monitoring of transplanted cells' fate via molecular imaging. Finally,cell enhancement strategies to improve the engraftment efficiency of hESC-ECs will be discussed.
View Publication
Trzonkowski P et al. (MAR 2009)
Cytometry. Part A : the journal of the International Society for Analytical Cytology 75 3 175--88
Ex vivo expansion of CD4(+)CD25(+) T regulatory cells for immunosuppressive therapy.
Immunosuppressants are powerful drugs,capable of triggering severe adverse effects. Hence,there is tremendous interest in replacing them with less-toxic agents. Adoptive therapy with CD25(+)CD4(+) T regulatory cells (Tregs) holds promise as an alternative to immunosuppressants. Tregs have been described as the most potent immunosuppressive cells in the human body. In a number of experimental models,they have been found to quench autoimmune diseases,maintain allogeneic transplants,and prevent allergic diseases. A major stumbling block in their clinical application is related to Treg phenotype and the very limited number of these cells in the periphery,not exceeding 1-5% of total CD4(+) T cells. Recent progress in multicolor flow cytometry and cell sorting as well as cellular immunology has found ways of overcoming these obstacles,and has opened the doors to the clinical application of Tregs. In the review,we describe Treg sorting and expansion techniques that have been developed in recent years. In the experience of our laboratory,as well as some published reports,Treg adoptive therapy is a promising tool in immunosuppressive therapy,and should be considered for clinical trials.
View Publication
产品类型:
产品号#:
19052
19052RF
产品名:
EasySep™人CD4+ T细胞富集试剂盒
RoboSep™ 人CD4+ T细胞富集试剂盒含滤芯吸头
文献
Hamot G et al. (JUN 2015)
Biopreservation and biobanking 13 3 152--63
Method validation for automated isolation of viable peripheral blood mononuclear cells.
BACKGROUND This article is part of a series of publications providing formal method validation for biospecimen processing in the context of accreditation in laboratories and biobanks. We report the optimization and validation for fitness-for-purpose of automated and manual protocols for isolating peripheral blood mononuclear cells (PBMCs) from whole blood,and compare the two methods. METHODS The manual method was optimized for whole blood centrifugation speed,gradient type (Ficoll,Leucosep,CPT),and freezing method (Mr Frosty,Controlled Rate Freezing). Various parameters of the automated protocol using a CPT gradient on a Tecan liquid handler were optimized. Optimal protocols were validated in parallel for reproducibility and robustness. Optimization and validation were assessed in terms of cell yield,viability,recovery,white blood cell (WBC) subpopulation distribution,gene expression,and lymphoblastoid cell line (LCL) transformation. RESULTS An initial centrifugation of whole blood at 2000 g was considered optimal for further processing,allowing isolation of plasma and PBMCs from a single sample. The three gradients gave similar outcomes in terms of cell yield,viability,and WBC subpopulation distribution. Ficoll showed some advantages and was selected for further evaluations. Optimization of the automated protocol script using a CPT gradient gave 61% cell recovery. No significant differences in quality,quantity,and WBC subpopulation distribution were seen between the two freezing methods,and Mr. Frosty was selected. The manual and automated protocols were reproducible in terms of quantity,recovery,viability,WBC subpopulation distribution,gene expression,and LCL transformation. Most (75%-100%) of the 13 robustness parameters were accepted for both methods with an 8 h pre-centrifugation delay versus 38%-85% after 24 h. Differences identified between the automated and manual methods were not considered consequential. CONCLUSIONS We validated the first fully automated method for isolating viable PBMCs,including RNA analysis and generation of LCLs. We recommend processing within 8 h of blood collection.
View Publication
产品类型:
产品号#:
07930
07931
07940
07955
07959
产品名:
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
文献
Mashimo Y and Kamei K-II ( 2015)
1346 85--98
Microfluidic Image Cytometry for Single-Cell Phenotyping of Human Pluripotent Stem Cells
A microfluidic human pluripotent stem cell (hPSC) array has been developed for robust and reproducible hPSC culture methods to assess chemically defined serum- and feeder-free culture conditions. This microfluidic platform,combined with image cytometry,enables the systematic analysis of multiple simultaneously detected marker expression in individual cells,for screening of various chemically defined media across hPSC lines,and the study of phenotypic responses.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
N. Albinger et al. (apr 2022)
Blood cancer journal 12 4 61
Primary CD33-targeting CAR-NK cells for the treatment of acute myeloid leukemia.
Acute myeloid leukemia (AML) is a malignant disorder derived from neoplastic myeloid progenitor cells characterized by abnormal proliferation and differentiation. Although novel therapeutics have recently been introduced,AML remains a therapeutic challenge with insufficient cure rates. In the last years,immune-directed therapies such as chimeric antigen receptor (CAR)-T cells were introduced,which showed outstanding clinical activity against B-cell malignancies including acute lymphoblastic leukemia (ALL). However,the application of CAR-T cells appears to be challenging due to the enormous molecular heterogeneity of the disease and potential long-term suppression of hematopoiesis. Here we report on the generation of CD33-targeted CAR-modified natural killer (NK) cells by transduction of blood-derived primary NK cells using baboon envelope pseudotyped lentiviral vectors (BaEV-LVs). Transduced cells displayed stable CAR-expression,unimpeded proliferation,and increased cytotoxic activity against CD33-positive OCI-AML2 and primary AML cells in vitro. Furthermore,CD33-CAR-NK cells strongly reduced leukemic burden and prevented bone marrow engraftment of leukemic cells in OCI-AML2 xenograft mouse models without observable side effects.
View Publication