F. E. Kapucu et al. (Jul 2024)
NPJ Parkinson's Disease 10
Human tripartite cortical network model for temporal assessment of alpha-synuclein aggregation and propagation in Parkinson’s Disease
Previous studies have shown that aggregated alpha-synuclein (α-s) protein,a key pathological marker of Parkinson’s disease (PD),can propagate between cells,thus participating in disease progression. This prion-like propagation has been widely studied using in vivo and in vitro models,including rodent and human cell cultures. In this study,our focus was on temporal assessment of functional changes during α-s aggregation and propagation in human induced pluripotent stem cell (hiPSC)-derived neuronal cultures and in engineered networks. Here,we report an engineered circular tripartite human neuronal network model in a microfluidic chip integrated with microelectrode arrays (MEAs) as a platform to study functional markers during α-s aggregation and propagation. We observed progressive aggregation of α-s in conventional neuronal cultures and in the exposed (proximal) compartments of circular tripartite networks following exposure to preformed α-s fibrils (PFF). Furthermore,aggregated forms propagated to distal compartments of the circular tripartite networks through axonal transport. We observed impacts of α-s aggregation on both the structure and function of neuronal cells,such as in presynaptic proteins,mitochondrial motility,calcium oscillations and neuronal activity. The model enabled an assessment of the early,middle,and late phases of α-s aggregation and its propagation during a 13-day follow-up period. While our temporal analysis suggested a complex interplay of structural and functional changes during the in vitro propagation of α-s aggregates,further investigation is required to elucidate the underlying mechanisms. Taken together,this study demonstrates the technical potential of our introduced model for conducting in-depth analyses for revealing such mechanisms. Subject terms: Parkinson's disease,Neurological models
View Publication
产品类型:
产品号#:
05790
产品名:
BrainPhys™神经元培养基
Mao et al. (Nov 2024)
Communications Biology 7
Targeting protein homeostasis with small molecules as a strategy for the development of pan-coronavirus antiviral therapies
The COVID-19 pandemic has created a global health crisis,with challenges arising from the ongoing evolution of the SARS-CoV-2 virus,the emergence of new strains,and the long-term effects of COVID-19. Aiming to overcome the development of viral resistance,our study here focused on developing broad-spectrum pan-coronavirus antiviral therapies by targeting host protein quality control mechanisms essential for viral replication. Screening an in-house compound library led to the discovery of three candidate compounds targeting cellular proteostasis. The three compounds are (1) the nucleotide analog cordycepin,(2) a benzothiozole analog,and (3) an acyldepsipeptide analog initially developed as part of a campaign to target the mitochondrial ClpP protease. These compounds demonstrated dose-dependent efficacy against multiple coronaviruses,including SARS-CoV-2,effectively inhibiting viral replication in vitro as well as in lung organoids. Notably,the compounds also showed efficacy against SARS-CoV-2 delta and omicron strains. As part of this work,we developed a BSL2-level cell-integrated SARS-CoV-2 replicon,which could serve as a valuable tool for high-throughput screening and studying intracellular viral replication. Our study should aid in the advancement of antiviral drug development efforts. Subject terms: High-throughput screening,Small molecules
View Publication
Vicetti Miguel RD et al. (DEC 2010)
Journal of immunology (Baltimore,Md. : 1950) 185 11 6706--18
CTL induction of tumoricidal nitric oxide production by intratumoral macrophages is critical for tumor elimination.
To characterize mechanisms of CTL inhibition within an ocular tumor microenvironment,tumor-specific CTLs were transferred into mice with tumors developing within the anterior chamber of the eye or skin. Ocular tumors were resistant to CTL transfer therapy whereas skin tumors were sensitive. CTLs infiltrated ocular tumors at higher CTL/tumor ratios than in skin tumors and demonstrated comparable ex vivo effector function to CTLs within skin tumors indicating that ocular tumor progression was not due to decreased CTL accumulation or inhibited CTL function within the eye. CD11b(+)Gr-1(+)F4/80(-) cells predominated within ocular tumors,whereas skin tumors were primarily infiltrated by CD11b(+)Gr-1(-)F4/80(+) macrophages (Ms),suggesting that myeloid derived suppressor cells may contribute to ocular tumor growth. However,CD11b(+) myeloid cells isolated from either tumor site suppressed CTL activity in vitro via NO production. Paradoxically,the regression of skin tumors by CTL transfer therapy required NO production by intratumoral Ms indicating that NO-producing intratumoral myeloid cells did not suppress the effector phase of CTL. Upon CTL transfer,tumoricidal concentrations of NO were only produced by skin tumor-associated Ms though ocular tumor-associated Ms demonstrated comparable expression of inducible NO synthase protein suggesting that NO synthase enzymatic activity was compromised within the eye. Correspondingly,in vitro-activated Ms limited tumor growth when co-injected with tumor cells in the skin but not in the eye. In conclusion,the decreased capacity of Ms to produce NO within the ocular microenvironment limits CTL tumoricidal activity allowing ocular tumors to progress.
View Publication
J. Hu et al. (jan 2022)
Journal for immunotherapy of cancer 10 1
Cell membrane-anchored and tumor-targeted IL-12 (attIL12)-T cell therapy for eliminating large and heterogeneous solid tumors.
BACKGROUND Adoptive T-cell transfer has become an attractive therapeutic approach for hematological malignancies but shows poor activity against large and heterogeneous solid tumors. Interleukin-12 (IL-12) exhibits potent antitumor efficacy against solid tumors,but its clinical application has been stalled because of toxicity. Here,we aimed to develop a safe approach to IL-12 T-cell therapy for eliminating large solid tumors. METHODS We generated a cell membrane-anchored IL-12 (aIL12),a tumor-targeted IL-12 (ttIL12),and a cell membrane-anchored and ttIL-12 (attIL12) and a cell membrane-anchored and tumor-targeted ttIL-12 (attIL12) armed T cells,chimeric antigen receptor-T cells,and T cell receptor-T (TCR-T) cells with each. We compared the safety and efficacy of these armed T cells in treating osteosarcoma patient-derived xenograft tumors and mouse melanoma tumors after intravenous infusions of the armed T cells. RESULTS attIL12-T cell infusion showed remarkable antitumor efficacy in human and mouse large solid tumor models. Mechanistically,attIL12-T cells targeted tumor cells expressing cell-surface vimentin,enriching effector T cell and interferon $\gamma$ production in tumors,which in turn stimulates dendritic cell maturation for activating secondary T-cell responses and tumor antigen spreading. Both attIL12- and aIL12-T-cell transfer eliminated peripheral cytokine release and the associated toxic effects. CONCLUSIONS This novel approach sheds light on the safe application of IL-12-based T-cell therapy for large and heterogeneous solid tumors.
View Publication
产品类型:
产品号#:
17953
17953RF
100-0710
产品名:
EasySep™人CD8+ T细胞分选试剂盒
RoboSep™ 人CD8+ T细胞分选试剂盒
EasySep™人CD8+ T细胞分选试剂盒
(Jul 2025)
Nature Communications 16
Chromatin interaction maps of human arterioles reveal mechanisms for the genetic regulation of blood pressure
Arterioles are small blood vessels located just upstream of capillaries in nearly all tissues. Despite the broad and essential role of arterioles in physiology and disease,current knowledge of the functional genomics of arterioles is largely absent. Here,we report extensive maps of chromatin interactions,single-cell expression,and other molecular features in human arterioles and uncover mechanisms linking human genetic variants to gene expression in vascular cells and the development of hypertension. Compared to large arteries,arterioles exhibited a higher proportion of pericytes which were enriched for blood pressure (BP)-associated genes. BP-associated single nucleotide polymorphisms (SNPs) were enriched in chromatin interaction regions in arterioles. We linked BP-associated noncoding SNP rs1882961 to gene expression through long-range chromatin contacts and revealed remarkable effects of a 4-bp noncoding genomic segment on hypertension in vivo. We anticipate that our data and findings will advance the study of the numerous diseases involving arterioles. Liu et al.,report extensive maps of chromatin interactions,single-cell expression,and other molecular features in human arterioles and uncover mechanisms linking noncoding genetic variants to gene expression and the development of hypertension.
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
(May 2025)
Biotechnology Reports 47 9
Scale-down optimization of a robust, parallelizable human induced pluripotent stem cell bioprocess for high-throughput research
Highlights•Preformation of aggregates tuned by cell density enable cultivation of hiPSCs in scale-down shear environments.•Scale-down systems utilizing preformation protocols achieve comparable fold expansion with commercial systems.•Expression of pluripotency markers and functional differentiation capacity is maintained following passage in scale-down culture.•Successful application of hiPSC protocols at < 20 mL scales enable rapid and cost-effective research into cell phenotype under dynamic conditions. Human induced pluripotent stem cell (hiPSC) derived therapeutics require clinically relevant quantities of high-quality cell populations for applications in regenerative medicine. The lack of efficacy exhibited across clinical trials suggests deeper understanding of the networks governing phenotype is needed. Further,costs limit study throughput in characterizing the artificial niche relative to outcomes. We present herein an optimized strategy to enable high-throughput hiPSC expansion at <20 mL research scale. We assessed viability of single cell inoculation and aggregate preformation to facilitate proliferation. We modeled aggregate characteristics against agitation rate. Our results demonstrate tunable control with fold expansion comparable to commercial systems. Marker quantification and teratoma assay confirm functional pluripotency. This approach constitutes a scalable protocol to accelerate hiPSC research,and a significant step in advancing the rate of progress in elucidating links to derivative functionality. This work will enable statistically rigorous studies targeting hiPSC and downstream phenotype for clinical manufacturing. Graphical abstractImplementation of adapted protocols enable scale-down systems as a tool for high-throughput iPSC biomanufacturing research,in platforms conducive to scale-up for clinical manufacturing.Image,graphical abstract
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
O. Contreras et al. (Aug 2025)
iScience 28 9
OpenEMMU: A versatile, open-source EdU multiplexing methodology for studying DNA replication and cell cycle dynamics
5-Ethynyl-2′-deoxyuridine (EdU) has revolutionized DNA replication and cell cycle analyses through fast,efficient click chemistry detection. However,commercial EdU kits suffer from high costs,proprietary formulations,limited antibody multiplexing capabilities,and difficulties with larger biological specimens. Here,we present OpenEMMU (Open-source EdU Multiplexing Methodology for Understanding DNA replication dynamics),an optimized,affordable,and user-friendly click chemistry platform utilizing off-the-shelf reagents. OpenEMMU enhances efficiency,brightness,and multiplexing capabilities of EdU staining with both non-conjugated and conjugated antibodies across diverse cell types,including T cell activation and proliferation assays. We validated its effectiveness for the fluorescent imaging of nascent DNA synthesis in developing embryos and organs,including embryonic heart,forelimbs,and 3D hiPSC-derived cardiac organoids. OpenEMMU also enabled the deep-tissue 3D imaging of DNA synthesis in zebrafish larvae and under replication stress in embryos at high spatial resolution. This approach opens new avenues for understanding organismal development,cell proliferation,and DNA replication dynamics with unprecedented precision and flexibility. Subject areas: Biochemistry,Cell biology,Developmental biology,Computational bioinformatics
View Publication
产品类型:
产品号#:
100-0483
100-0484
100-0276
100-1130
产品名:
Hausser Scientificᵀᴹ 明线血球计数板
ReLeSR™
mTeSR™ Plus
mTeSR™ Plus
S. Tamiya et al. (Dec 2024)
Open Forum Infectious Diseases 12 1
H and B Blood Antigens Are Essential for In Vitro Replication of GII.2 Human Norovirus
Human norovirus (HuNoV) is a major cause of enteric infectious gastroenteritis and is classified into several genotypes based on its capsid protein amino acid sequence and nucleotide sequence of the polymerase gene. Among these,GII.4 is the major genotype worldwide. Epidemiological studies have highlighted the prevalence of GII.2. Although recent advances using human tissue– and induced pluripotent stem cell (iPSC)–derived intestinal epithelial cells (IECs) have enabled in vitro replication of multiple HuNoV genotypes,GII.2 HuNoV could replicate only in tissue-derived IECs and not in iPSC-derived IECs. We investigated the factors influencing GII.2 HuNoV replication in IECs,focusing on histo-blood group antigens. We also assessed the immunogenicity of GII.2 virus-like particles (VLPs) and their ability to induce neutralizing antibodies. Antibody cross-reactivity was tested to determine whether GII.2 VLPs could neutralize other HuNoV genotypes,including GII.4,GII.3,GII.6,and GII.17. Our findings indicated that GII.2 HuNoV replication in vitro requires the presence of both H and B antigens. Moreover,GII.2 VLPs generated neutralizing antibodies effective against both GII.2 and GII.4 but not against GII.3,GII.6,or GII.17. Comparatively,GII.2 and GII.17 VLPs induced broader neutralizing responses than GII.4 VLPs. The findings of this study suggests that GII.2 and GII.17 VLPs may be advantageous as HuNoV vaccine candidates because they elicit neutralizing antibodies against the predominant GII.4 genotype,which could be particularly beneficial for infants without prior HuNoV exposure. These insights will contribute to the development of effective HuNoV vaccines.
View Publication
产品类型:
产品号#:
05140
产品名:
STEMdiff™肠道类器官试剂盒
B. L. Khoo et al. ( 2019)
NPJ precision oncology 3 30
Liquid biopsy for minimal residual disease detection in leukemia using a portable blast cell biochip.
Long-term management for leukemia is challenging due to the painful and invasive procedure of bone marrow (BM) biopsy. At present,non-invasive liquid (blood) biopsy is not utilized for leukemia,due to lower counts of leukemia blast cells in the blood. Here,we described a robust system for the simultaneous detection and enrichment of rare blast cells. Enrichment of blast cells was achieved from blood with a one-step microfluidic blast cell biochip (BCB) sorting system,without specific targeting of proteins by antibodies. Non-target cells encountered a differential net force as compared to stiffer blast cells and were removed. The efficiency of the BCB promotes high detection sensitivity (1 in 106 cells) even from patients with minimal residual disease. The procedure was validated using actual blast cells from patients with various types of leukemia. Outcomes were compared to current evaluation standards,such as flow cytometry,using BM aspirates. Blast cell detection efficiency was higher in 55.6{\%} of the patients using the BCB as compared to flow cytometry,despite the lower concentrations of blast cells in liquid biopsy. These studies promote early-stage detection and routine monitoring for minimal residual disease in patients.
View Publication