若您需要咨询产品或有任何技术问题,请通过官方电话 400 885 9050 或邮箱 info.cn@stemcell.com 与我们联系

MesenCult™ MSC 基础培养基(人)

人间充质干细胞的基础培养基

产品号 #(选择产品)

产品号 #05401_C

人间充质干细胞的基础培养基

专为您的实验方案打造的产品
要查看实验方案所需的所有配套产品,请参阅《实验方案与技术文档》

总览

MesenCult™ MSC基础培养基(人)是一种标准化的基础培养基,和MesenCult™ 间充质干细胞刺激补充剂(人;产品号 #05402)搭配使用,用于人间充质干细胞的体外培养。MesenCult™MSC基础培养基是MesenCult™增殖试剂盒(人;产品号 #05411)的组分,也可以单独购买。

亚型
基础培养基
 
细胞类型
间充质干/祖细胞
 
种属

 
应用
细胞培养,克隆筛选,扩增
 
品牌
MesenCult
 
研究领域
干细胞生物学
 

产品说明书及文档

请在《产品说明书》中查找相关支持信息和使用说明,或浏览下方更多实验方案。

Document Type
Product Name
Catalog #
Lot #
Language
Catalog #
05401
Lot #
All
Language
English
Document Type
Safety Data Sheet
Catalog #
05401
Lot #
All
Language
English

应用领域

本产品专为以下研究领域设计,适用于工作流程中的高亮阶段。探索这些工作流程,了解更多我们为各研究领域提供的其他配套产品。

相关材料与文献

技术资料 (5)

文献 (48)

FAK Deficiency in Bone Marrow Stromal Cells Alters Their Homeostasis and Drives Abnormal Proliferation and Differentiation of Haematopoietic Stem Cells. Y. Wu et al. Cells 2020 mar

Abstract

Emerging evidence indicates that in myelodysplastic syndromes (MDS), the bone marrow (BM) microenvironment may also contribute to the ineffective, malignant haematopoiesis in addition to the intrinsic abnormalities of haematopoietic stem precursor cells (HSPCs). The BM microenvironment influences malignant haematopoiesis through indirect mechanisms, but the processes by which the BM microenvironment directly contributes to MDS initiation and progression have not yet been elucidated. Our previous data showed that BM-derived stromal cells (BMSCs) from MDS patients have an abnormal expression of focal adhesion kinase (FAK). In this study, we characterise the morpho-phenotypic features and the functional alterations of BMSCs from MDS patients and in FAK knock-downed HS-5 cells. The decreased expression of FAK or its phosphorylated form in BMSCs from low-risk (LR) MDS directly correlates with BMSCs' functional deficiency and is associated with a reduced level of haemoglobin. The downregulation of FAK in HS-5 cells alters their morphology, proliferation, and differentiation capabilities and impairs the expression of several adhesion molecules. In addition, we examine the CD34+ healthy donor (HD)-derived HSPCs' properties when co-cultured with FAK-deficient BMSCs. Both abnormal proliferation and the impaired erythroid differentiation capacity of HD-HSPCs were observed. Together, these results demonstrate that stromal adhesion mechanisms mediated by FAK are crucial for regulating HSPCs' homeostasis.
Icariin protects rabbit BMSCs against OGD-induced apoptosis by inhibiting ERs-mediated autophagy via MAPK signaling pathway. D. Liu et al. Life sciences 2020 jul

Abstract

Stem cell therapy is widely employed in treating osteoarthritis (OA), and bone marrow-derived mesenchymal stem cells (BMSCs) has gradually become the most attractive new method for treating OA due to the benefit for cartilage tissue repair. However, the apoptosis in the neural stem cell transplantation severely decreases repairing efficacy. Icariin has been reported to exert multiple effects on BMSCs, including its proliferation, osteogenic, and chondrogenic differentiation. However, its effects on the injury induced by oxygen, glucose and serum deprivation (OGD) remains unknown. We prospectively investigated the role of ICA on rabbit BMSCs under conditions of OGD. Firstly, BMSCs were cultured under conditions of OGD, ICA relieved OGD-induced cell damage by promoting cell proliferation and suppressing apoptosis. Secondly, Markers of endoplasmic reticulum stress (ERs), ER stress IRE-1 pathway, and autophagy were both inhibited by ICA via inhibition of phosphor-extracellular regulated protein kinases (p-ERKs), p-P38, p-c-Jun N-terminal kinase (p-JNK) or si-MAPK. Finally, decrease of ERs marker levels enhanced protective effect of ICA against OGD-induced injury by limiting apoptosis and autophagy. Moreover, an autophagy inhibitor (3-methyladenine: 3-MA) contributed to a synergistic effect in conjunction with ICA, in promoting cell proliferation, suggesting that ICA exerts anti-ERs and anti-autophagy effects in OGD-treated BMSCs. Therefore, ICA protected rabbit BMSCs from OGD-induced apoptosis through inhibitory regulation of ERs-mediated autophagy related to the MAPK signaling pathway, which provided insights for a potential therapeutic strategy in OA.
A Unique Nonsaccharide Mimetic of Heparin Hexasaccharide Inhibits Colon Cancer Stem Cells via p38 MAP Kinase Activation. R. S. Boothello et al. Molecular cancer therapeutics 2019

Abstract

Targeting of cancer stem cells (CSC) is expected to be a paradigm-shifting approach for the treatment of cancers. Cell surface proteoglycans bearing sulfated glycosaminoglycan (GAG) chains are known to play a critical role in the regulation of stem cell fate. Here, we show for the first time that G2.2, a sulfated nonsaccharide GAG mimetic (NSGM) of heparin hexasaccharide, selectively inhibits colonic CSCs in vivo G2.2-reduced CSCs (CD133+/CXCR4+, Dual hi) induced HT-29 and HCT 116 colon xenografts' growth in a dose-dependent fashion. G2.2 also significantly delayed the growth of colon xenograft further enriched in CSCs following oxaliplatin and 5-fluorouracil treatment compared with vehicle-treated xenograft controls. In fact, G2.2 robustly inhibited CSCs' abundance (measured by levels of CSC markers, e.g., CD133, DCMLK1, LGR5, and LRIG1) and self-renewal (quaternary spheroids) in colon cancer xenografts. Intriguingly, G2.2 selectively induced apoptosis in the Dual hi CSCs in vivo eluding to its CSC targeting effects. More importantly, G2.2 displayed none to minimal toxicity as observed through morphologic and biochemical studies of vital organ functions, blood coagulation profile, and ex vivo analyses of normal intestinal (and bone marrow) progenitor cell growth. Through extensive in vitro, in vivo, and ex vivo mechanistic studies, we showed that G2.2's inhibition of CSC self-renewal was mediated through activation of p38$\alpha$, uncovering important signaling that can be targeted to deplete CSCs selectively while minimizing host toxicity. Hence, G2.2 represents a first-in-class (NSGM) anticancer agent to reduce colorectal CSCs.

更多信息

更多信息
种属 Human
质量保证:

产品仅供研究使用,不用于针对人或动物的诊断或治疗。 欲获悉更多关于STEMCELL的质控信息,请访问 STEMCELL.CN/COMPLIANCE.
Copyright © 2025 by STEMCELL Technologies. All rights reserved.