若您需要咨询产品或有任何技术问题,请通过官方电话 400 885 9050 或邮箱 info.cn@stemcell.com 与我们联系

MethoCult™H4230

甲基纤维素为基础的培养基,不含细胞因子,用于人类细胞

产品号 #(选择产品)

产品号 #04230_C

甲基纤维素为基础的培养基,不含细胞因子,用于人类细胞

总览

MethoCult™H4230是一种基于不完全甲基纤维素的培养基,用于人骨髓、动员外周血、外周血和脐带血样本的集落形成单位(CFU)检测中造血祖细胞的生长和计数。该制剂不含促红细胞生成素(EPO)或其他细胞因子,允许添加细胞因子以满足研究人员的特定要求。

浏览我们的常见问题(FAQs)进行CFU化验和探索其作为细胞治疗工作流程一部分的效用.

Contains
• Methylcellulose in Iscove's MDM
• Fetal bovine serum
• Bovine serum albumin
• 2-Mercaptoethanol
• Supplements
 
Subtype
Semi-Solid Media, Specialized Media
 
Cell Type
Hematopoietic Stem and Progenitor Cells
 
Species
Human, Non-Human Primate
 
Application
Cell Culture, Colony Assay, Functional Assay
 
Brand
MethoCult
 
Area of Interest
Stem Cell Biology
 

产品说明书及文档

请在《产品说明书》中查找相关支持信息和使用说明,或浏览下方更多实验方案。

Document Type
Product Name
Catalog #
Lot #
Language
Catalog #
04230
Lot #
All
Language
English
Document Type
Technical Manual
Catalog #
04230
Lot #
All
Language
English
Document Type
Safety Data Sheet
Catalog #
04230
Lot #
All
Language
English

应用领域

本产品专为以下研究领域设计,适用于工作流程中的高亮阶段。探索这些工作流程,了解更多我们为各研究领域提供的其他配套产品。

相关材料与文献

技术资料 (4)

常见问题

Why use semi-solid media?

Semi-solid media (methylcellulose-based MethoCult™ and collagen-based MegaCult™-C) allow the clonal progeny of a single progenitor cell to remain spatially isolated from other colonies within a culture, so they may be separately identified and counted.

Why use methylcellulose-based media?

Methylcellulose permits better growth of erythroid colonies than other types of semi-solid support systems (eg. agar) while allowing optimal myeloid colony formation. When appropriate cytokines are present, committed progenitor cells of both erythroid and granulocyte/macrophage lineages (CFU-GM, CFU-G, CFU-M) as well as multi-potential progenitor cells (CFU-GEMM), can be assayed simultaneously in the same culture dish.

Is it necessary to add antibiotics to the media?

No, aseptic technique should be sufficient to maintain sterile cultures. However, antibiotics (eg. Penicillin/Streptomycin) or anti-fungals (eg. Amphotericin B) may be added to the methylcellulose medium if desired.

Is there anything I can do if my cultures appear contaminated?

No, once contamination is visible, it is not possible to rescue the cultures by the addition of antibiotics. Bacteria and yeast inhibit colony formation by depleting nutrients or by releasing toxic substances.

Why can't I use a pipette to dispense methylcellulose-based media?

Methylcellulose is a viscous solution that cannot be accurately dispensed using a pipette due to adherence of the medium to the walls of the pipette tip. Blunt-End, 16 Gauge needles (Catalog #28110), in combination with 3 cc Syringes (Catalog #28230) are recommended for accurate dispensing of MethoCult™.

Can I 'pluck' the colonies for individual analysis?

Yes, colonies can be 'plucked' using a pipette with 200 µL sterile pipette tips or using a glass Pasteur pipette with an elongated tip. Individual colonies should be placed in a volume of 25 - 50 µL of medium, and diluted into suitable culture medium for further culture or analysis.

Why are low adherence dishes so important?

Adherent cells such as fibroblasts can cause inhibition of colony growth and obscure visualization of colonies.

Can MethoCult™ products be used for lymphoid progenitor CFU assays?

Human lymphoid progenitors (B, NK and T) seem to require stromal support for growth therefore cannot be grown in MethoCult™. Mouse pre-B clonogenic progenitors can be grown in MethoCult™ M3630 (Catalog #03630).

Is it possible to set up CFU assays in a 24-well plate?

Yes, as long as a plating concentration optimized for the smaller surface area of a well in a 24-well plate (1.9 cm2 as compared to ~9.5 cm2 for a 35 mm dish) is used for these assays. The number of replicate wells required to get an accurate estimation of CFU numbers may also need to be increased.

Can I stain colonies in MethoCult™ medium?

The cells in individual colonies in MethoCult™ can be stained, eg., for analysis of morphology or phenotype, after they are plucked from the dish and washed free of methylcellulose. Colonies grown in collagen-based MegaCult™-C medium can be used for immunohistochemical or enzymatic staining in situ after dehydration and fixation onto glass slides.

Are there differences in colony morphology with serum-free media?

Serum-containing media generally give better overall growth (colonies may appear larger) but there are no large differences in total colony numbers when CFU assays using serum-free media and serum-containing media are compared, provided that identical cytokines are present.

Can MethoCult™ be made with alternate base media?

Yes, this can be done as a 'custom' media order. Please contact techsupport@stemcell.com for more information.

Is there a MethoCult™ formulation suitable for HPP-CFC (high proliferative potential colony forming cell)?

Yes, MethoCult™ H4535 (Catalog #04535) can be used for the HPP-CFC assay as it does not contain EPO. The culture period is usually 28 days. It is not necessary to feed these cultures as growth factors in the medium are present in excess. As HPP-CFCs can be quite large, overplating can be a problem. It is recommended to plate cells at two or more different concentrations.

文献 (35)

Identification of key microRNAs as predictive biomarkers of Nilotinib response in chronic myeloid leukemia: a sub-analysis of the ENESTxtnd clinical trial. R. Yen et al. Leukemia 2022 oct

Abstract

Despite the effectiveness of tyrosine kinase inhibitors (TKIs) against chronic myeloid leukemia (CML), they are not usually curative as some patients develop drug-resistance or are at risk of disease relapse when treatment is discontinued. Studies have demonstrated that primitive CML cells display unique miRNA profiles in response to TKI treatment. However, the utility of miRNAs in predicting treatment response is not yet conclusive. Here, we analyzed differentially expressed miRNAs in CD34+ CML cells pre- and post-nilotinib (NL) therapy from 58 patients enrolled in the Canadian sub-analysis of the ENESTxtnd phase IIIb clinical trial which correlated with sensitivity of CD34+ cells to NL treatment in in vitro colony-forming cell (CFC) assays. We performed Cox Proportional Hazard (CoxPH) analysis and applied machine learning algorithms to generate multivariate miRNA panels which can predict NL response at treatment-na{\{i}}ve or post-treatment time points. We demonstrated that a combination of miR-145 and miR-708 are effective predictors of NL response in treatment-na{\"{i}}ve patients whereas miR-150 and miR-185 were significant classifiers at 1-month and 3-month post-NL therapy. Interestingly incorporation of NL-CFC output in these panels enhanced predictive performance. Thus this novel predictive model may be developed into a prognostic tool for use in the clinic."
Antimetabolic cooperativity with the clinically approved l-asparaginase and tyrosine kinase inhibitors to eradicate CML stem cells. A. Trinh et al. Molecular metabolism 2022 jan

Abstract

OBJECTIVE Long-term treatment with tyrosine kinase inhibitors (TKI) represents an effective cure for chronic myeloid leukemia (CML) patients and discontinuation of TKI therapy is now proposed to patient with deep molecular responses. However, evidence demonstrating that TKI are unable to fully eradicate dormant leukemic stem cells (LSC) indicate that new therapeutic strategies are needed to control LSC and to prevent relapse. In this study we investigated the metabolic pathways responsible for CML surviving to imatinib exposure and its potential therapeutic utility to improve the efficacy of TKI against stem-like CML cells. METHODS Using complementary cell-based techniques, metabolism was characterized in a large panel of BCR-ABL+ cell lines as well as primary CD34+ stem-like cells from CML patients exposed to TKI and L-Asparaginases. Colony forming cell (CFC) assay and flow cytometry were used to identify CML progenitor and stem like-cells. Preclinical models of leukemia dormancy were used to test the effect of treatments. RESULTS Although TKI suppressed glycolysis, compensatory glutamine-dependent mitochondrial oxidation supported ATP synthesis and CML cell survival. Glutamine metabolism was inhibited by L-asparaginases such as Kidrolase or Erwinase without inducing predominant CML cell death. However, clinically relevant concentrations of TKI render CML cells susceptible to Kidrolase. The combination of TKI with Lasparaginase reactivates the intinsic apoptotic pathway leading to efficient CML cell death. CONCLUSION Targeting glutamine metabolism with the FDA-approved drug, Kidrolase in combination with TKI that suppress glycolysis represents an effective and widely applicable therapeutic strategy for eradicating stem-like CML cells.
MYC-induced human acute myeloid leukemia requires a continuing IL3/GM-CSF co-stimulus. E. Bulaeva et al. Blood 2020 jun

Abstract

Hematopoietic clones with leukemogenic mutations arise in healthy people as they age, but progression to acute myeloid leukemia (AML) is rare. Recent evidence suggests that the microenvironment may play an important role in modulating human AML population dynamics. To investigate this concept further, we examined the combined and separate effects of an oncogene (c-MYC) and exposure to IL3, GM-CSF and SCF on the experimental genesis of a human AML in xenografted immunodeficient mice. Initial experiments showed that normal human CD34+ blood cells transduced with a lentiviral MYC vector and then transplanted into immunodeficient mice produced a hierarchically organized, rapidly fatal and serially transplantable blast population, phenotypically and transcriptionally similar to human AML cells, but only in mice producing IL3, GM-CSF and SCF transgenically, or in regular mice in which the cells were exposed to IL3 or GM-CSF delivered using a co-transduction strategy. In their absence, the MYC+ human cells produced a normal repertoire of lymphoid and myeloid progeny in transplanted mice for many months but, upon transfer to secondary mice producing the human cytokines, the MYC+ cells rapidly generated AML. Indistinguishable diseases were also obtained efficiently from both primitive (CD34+CD38-) and late (GMPs) cells. These findings underscore the critical role that these cytokines can play in activating a malignant state in normally differentiating human hematopoietic cells in which MYC expression has been deregulated. They also introduce a robust experimental model of human leukemogenesis to further elucidate key mechanisms involved and test strategies to suppress them.

更多信息

更多信息
种属 Human, Non-Human Primate
Contains • Methylcellulose in Iscove's MDM • Fetal bovine serum • Bovine serum albumin • 2-Mercaptoethanol • Supplements
质量保证:

产品仅供研究使用,不用于针对人或动物的诊断或治疗。 欲获悉更多关于STEMCELL的质控信息,请访问 STEMCELL.CN/COMPLIANCE.
Copyright © 2025 by STEMCELL Technologies. All rights reserved.