若您需要咨询产品或有任何技术问题,请通过官方电话 400 885 9050 或邮箱 info.cn@stemcell.com 与我们联系

mTeSR™1

cGMP标准、无饲养层的人胚胎干细胞(ES)和诱导多能干细胞(iPS)维持培养基

产品号 #(选择产品)

产品号 #85850_C

cGMP标准、无饲养层的人胚胎干细胞(ES)和诱导多能干细胞(iPS)维持培养基

产品组分包括

  • mTeSR™1 完整试剂盒(目录号 #85850)
    • mTeSR™1 基础培养基,400 mL
    • mTeSR™1 5倍浓缩补充剂,100 mL
  • mTeSR™1 完整试剂盒,1 升装(目录号 #85857)
    • mTeSR™1 基础培养基,800 mL
    • mTeSR™1 5倍浓缩补充剂,100 mL,2 瓶
Need a high-quality cell source? Use the hiPSC SCTi003-A (female) or SCTi004-A (male) control lines, manufactured with mTeSR™ Plus.

What Our Scientist Says

It makes me proud knowing that my work is critical to keeping thousands of hPSC lines reliably healthy and consistent around the world.

Arwen HunterAssociate Director, Stem Cell Biology
Arwen Hunter, Associate Director, Stem Cell Biology

总览

mTeSR™3D 是为人胚胎干细胞(ES细胞)和人诱导多能干细胞(iPS细胞)在三维悬浮培养中以聚集体形式进行扩增和规模化培养而开发的。其新颖的补料分批(fed-batch)工作流程节省了时间和培养基。每日补料可补充营养,并消除了在非传代日更换培养基的需求。mTeSR™3D 采用专门的无血清配方。该培养系统兼容多种悬浮培养容器。

亚型
专用培养基
 
细胞类型
多能干细胞
 
种属

 
应用
细胞培养,扩增,培养
 
品牌
TeSR
 
研究领域
干细胞生物学
 
制剂类别
无血清
 

实验数据

Figure 1. Normal hES and hiPS Cell Morphology is Observed in cGMP mTeSR™1 Cultures

Undifferentiated (A) H1 human embryonic stem (hES) and (B) WLS-1C human induced pluripotent stem (hiPS) cells cultured on Corning® Matrigel® Matrix in cGMP mTeSR™1 retain the prominent nucleoli and high nuclear-to-cytoplasmic ratio characteristic of this cell type after 10 passages. Densely packed cells and multi-layering are prominent when cells are ready to be passaged.

Figure 2. High Expansion Rates are Observed in cGMP mTeSR™1 Cultures

Graph shows the average fold expansion per passage +/- SEM obtained for hES (H1 and H9) and hiPS (WLS-1C) cells cultured in cGMP mTeSR­™1 (red) or non-cGMP mTeSR™1 (gray) on Corning® Matrigel® Matrix over 10 passages. Expansion was determined by enumerating the cell aggregates obtained at harvest and dividing by the number of cell aggregates seeded. Note that this data is representative of cultures passaged after 6-7 days in culture, lower expansion should be expected if using shorter culture times.

Figure 3. Cells Cultured in cGMP mTeSR™1 Medium Express Undifferentiated Cell Markers

Histogram analysis for hES (H1 and H9) and hiPS (WLS-1C) cells characterized using FACS for undifferentiated cell markers, OCT4 (OCT3) (Catalog #60093) and TRA-1-60 (Catalog #60064), after 8 - 10 passages in cGMP mTeSR™1 (filled = sample, blank = isotype control).

Figure 4. hPSCs Maintained in cGMP mTeSR™1 Display a Normal Karyotype

Karyograms of (A) H1 hES and (B) WLS-1C hiPS cells cultured in cGMP mTeSR™1 for 11 passages shows that a normal karyotype is retained.

产品说明书及文档

请在《产品说明书》中查找相关支持信息和使用说明,或浏览下方更多实验方案。

Document Type
Product Name
Catalog #
Lot #
Language
Product Name
mTeSR™1
Catalog #
85857, 85850
Lot #
All
Language
English
Document Type
Technical Manual
Product Name
mTeSR™1
Catalog #
85850
Lot #
All
Language
English
Document Type
Safety Data Sheet 1
Product Name
mTeSR™1
Catalog #
85857, 85850
Lot #
All
Language
English
Document Type
Safety Data Sheet 2
Product Name
mTeSR™1
Catalog #
85857, 85850
Lot #
All
Language
English
Document Type
Safety Data Sheet 3
Product Name
mTeSR™1
Catalog #
85857, 85850
Lot #
All
Language
English
The Certificate of Analysis for this product has been updated for newly released materials. To access respective CoAs please use this tool.

应用领域

本产品专为以下研究领域设计,适用于工作流程中的高亮阶段。探索这些工作流程,了解更多我们为各研究领域提供的其他配套产品。

相关材料与文献

技术资料 (41)

文献 (1585)

Conditional CRISPR-mediated deletion of Lyn kinase enhances differentiation and function of iPSC-derived megakaryocytes. A. J. Moroi and P. J. Newman Journal of thrombosis and haemostasis : JTH 2022 jan

Abstract

BACKGROUND Thrombocytopenia leading to life-threatening excessive bleeding can be treated by platelet transfusion. Currently, such treatments are totally dependent on donor-derived platelets. To support future applications in the use of in vitro-derived platelets, we sought to identify genes whose manipulation might improve the efficiency of megakaryocyte production and resulting hemostatic effectiveness. Disruption of Lyn kinase has previously been shown to improve cell survival, megakaryocyte ploidy and TPO-mediated activation in mice, but its role in human megakaryocytes and platelets has not been examined. METHODS To analyze the role of Lyn at defined differentiation stages during human megakaryocyte differentiation, conditional Lyn-deficient cells were generated using CRISPR/Cas9 technology in iPS cells. The efficiency of Lyn-deficient megakaryocytes to differentiate and become activated in response to a range of platelet agonists was analyzed in iPSC-derived megakaryocytes. RESULTS Temporally controlled deletion of Lyn improved the in vitro differentiation of hematopoietic progenitor cells into mature megakaryocytes, as measured by the rate and extent of appearance of CD41+ CD42+ cells. Lyn-deficient megakaryocytes also demonstrated improved hemostatic effectiveness, as reported by their ability to mediate clot formation in rotational thromboelastometry. Finally, Lyn-deficient megakaryocytes produced increased numbers of platelet-like particles (PLP) in vitro. CONCLUSIONS Conditional deletion of Lyn kinase increases the hemostatic effectiveness of megakaryocytes and their progeny as well as improving their yield. Adoption of this system during generation of in vitro-derived platelets may contribute to both their efficiency of production and their ability to support hemostasis.
Establishment of a human iPSC line (SUTCMi001-A) derived from a healthy donor. L. Min et al. Stem cell research 2022 aug

Abstract

This study describes the characterization of one induced pluripotent stem cell line (iPSC) from a healthy female. It is crucial to use iPSCs derived from healthy individuals as controls in genetic disease studies. Thus, we established a human iPSC cell line derived from healthy people. The iPSC cell line was generated in our lab from the peripheral blood mononuclear cells (PBMCs) of a 28-year-old girl. The generated hiPSC line is free of episomal vectors, has a normal karyotype, expresses pluripotency markers and can differentiate into three germ layers in vivo.
iPSC-Based Modeling of RAG2 Severe Combined Immunodeficiency Reveals Multiple T Cell Developmental Arrests. M. Themeli et al. Stem cell reports 2020 feb

Abstract

RAG2 severe combined immune deficiency (RAG2-SCID) is a lethal disorder caused by the absence of functional T and B cells due to a differentiation block. Here, we generated induced pluripotent stem cells (iPSCs) from a RAG2-SCID patient to study the nature of the T cell developmental blockade. We observed a strongly reduced capacity to differentiate at every investigated stage of T cell development, from early CD7-CD5- to CD4+CD8+. The impaired differentiation was accompanied by an increase in CD7-CD56+CD33+ natural killer (NK) cell-like cells. T cell receptor D rearrangements were completely absent in RAG2SCID cells, whereas the rare T cell receptor B rearrangements were likely the result of illegitimate rearrangements. Repair of RAG2 restored the capacity to induce T cell receptor rearrangements, normalized T cell development, and corrected the NK cell-like phenotype. In conclusion, we succeeded in generating an iPSC-based RAG2-SCID model, which enabled the identification of previously unrecognized disorder-related T cell developmental roadblocks.

更多信息

更多信息
种属 Human
配方类别 Serum-Free
法律声明:

本产品系基于WiCell™研究院(WiCell™ Research Institute)知识产权授权许可开发。本产品的出售目的仅限于基于不可转让、用途受限之许可下的研究用途(无论购买者为学术机构或营利性主体)。购买本产品并不被授予为商业用途(即,以获利为目的的任何行为,如将本产品用于制造用途、或转售本产品或使用本产品所制成的任何材料、或将本产品或使用本产品所制成的材料用于提供服务)或临床应用(即,将本产品或本产品所用材料应用于人体)而出售、使用或另行转让本产品的权利,或出于基础临床前研究应用(包括但不限于畸胎瘤试验)以外的目的,由营利性主体或与其合作,将使用本产品制造的任何材料植入动物体内的权利。
购买者若不同意前述条款和条件,应保持产品完好,将其退还出售方以获退款。

质量保证:

产品仅供研究使用,不用于针对人或动物的诊断或治疗。 欲获悉更多关于STEMCELL的质控信息,请访问 STEMCELL.CN/COMPLIANCE.
Copyright © 2025 by STEMCELL Technologies. All rights reserved.