若您需要咨询产品或有任何技术问题,请通过官方电话 400 885 9050 或邮箱 info.cn@stemcell.com 与我们联系

SANT-1

Hedgehog通路抑制剂;抑制Smoothened(SMO)

产品号 #(选择产品)

产品号 #100-0538_C

Hedgehog通路抑制剂;抑制Smoothened(SMO)

总览

SANT-1是一种细胞渗透性拮抗剂,可直接结合Smoothened (Ki = 2.4 nM;Chenet al.;Rominger et al.),并抑制Sonic Hedgehog (Shh)信号通路。

分化
·促进人类胚胎干细胞向 β 细胞分化(Yung et al.)。
癌症研究
·阻断hedgehog信号通路,抑制肺癌细胞的肿瘤发生和增殖(Bai et al.)。

细胞类型
胰腺细胞
 
应用
分化
 
研究领域
癌症,干细胞生物学
 
CAS 编号
304909-07-7
 
化学式
C23H27N5
 
分子量
373.5 克/摩尔
 
纯度
≥98%
 
通路
Hedgehog
 
靶点
SMO
 

产品说明书及文档

请在《产品说明书》中查找相关支持信息和使用说明,或浏览下方更多实验方案。

Document Type
Product Name
Catalog #
Lot #
Language
Product Name
SANT-1
Catalog #
100-0538, 100-0539
Lot #
All
Language
English
Document Type
Safety Data Sheet
Product Name
SANT-1
Catalog #
100-0538, 100-0539
Lot #
All
Language
English

相关材料与文献

技术资料 (4)

文献 (4)

Sufu- and Spop-mediated downregulation of Hedgehog signaling promotes beta cell differentiation through organ-specific niche signals. T. Yung et al. Nature communications 2019

Abstract

Human embryonic stem cell-derived beta cells offer a promising cell-based therapy for diabetes. However, efficient stem cell to beta cell differentiation has proven difficult, possibly due to the lack of cross-talk with the appropriate mesenchymal niche. To define organ-specific niche signals, we isolated pancreatic and gastrointestinal stromal cells, and analyzed their gene expression during development. Our genetic studies reveal the importance of tightly regulated Hedgehog signaling in the pancreatic mesenchyme: inactivation of mesenchymal signaling leads to annular pancreas, whereas stroma-specific activation of signaling via loss of Hedgehog regulators, Sufu and Spop, impairs pancreatic growth and beta cell genesis. Genetic rescue and transcriptome analyses show that these Sufu and Spop knockout defects occur through Gli2-mediated activation of gastrointestinal stromal signals such as Wnt ligands. Importantly, inhibition of Wnt signaling in organoid and human stem cell cultures significantly promotes insulin-producing cell generation, altogether revealing the requirement for organ-specific regulation of stromal niche signals.
Blockade of Hedgehog Signaling Synergistically Increases Sensitivity to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Non-Small-Cell Lung Cancer Cell Lines. X.-Y. Bai et al. PloS one 2016

Abstract

Aberrant activation of the hedgehog (Hh) signaling pathway has been implicated in the epithelial-to-mesenchymal transition (EMT) and cancer stem-like cell (CSC) maintenance; both processes can result in tumor progression and treatment resistance in several types of human cancer. Hh cooperates with the epidermal growth factor receptor (EGFR) signaling pathway in embryogenesis. We found that the Hh signaling pathway was silenced in EGFR-TKI-sensitive non-small-cell lung cancer (NSCLC) cells, while it was inappropriately activated in EGFR-TKI-resistant NSCLC cells, accompanied by EMT induction and ABCG2 overexpression. Upregulation of Hh signaling through extrinsic SHH exposure downregulated E-cadherin expression and elevated Snail and ABCG2 expression, resulting in gefitinib tolerance (P {\textless} 0.001) in EGFR-TKI-sensitive cells. Blockade of the Hh signaling pathway using the SMO antagonist SANT-1 restored E-cadherin expression and downregulate Snail and ABCG2 in EGFR-TKI-resistant cells. A combination of SANT-1 and gefitinib markedly inhibited tumorigenesis and proliferation in EGFR-TKI-resistant cells (P {\textless} 0.001). These findings indicate that hyperactivity of Hh signaling resulted in EGFR-TKI resistance, by EMT introduction and ABCG2 upregulation, and blockade of Hh signaling synergistically increased sensitivity to EGFR-TKIs in primary and secondary resistant NSCLC cells. E-cadherin expression may be a potential biomarker of the suitability of the combined application of an Hh inhibitor and EGFR-TKIs in EGFR-TKI-resistant NSCLCs.
Evidence for allosteric interactions of antagonist binding to the smoothened receptor. C. M. Rominger et al. The Journal of pharmacology and experimental therapeutics 2009 jun

Abstract

The Smoothened receptor (Smo) mediates hedgehog (Hh) signaling critical for development, cell growth, and migration, as well as stem cell maintenance. Aberrant Hh signaling pathway activation has been implicated in a variety of cancers, and small-molecule antagonists of Smo have entered human clinical trials for the treatment of cancer. Here, we report the biochemical characterization of allosteric interactions of agonists and antagonists for Smo. Binding of two radioligands, [(3)H]3-chloro-N-[trans-4-(methylamino)cyclohexyl]-N-{\{}[3-(4-pyridinyl)-phenyl]methyl{\}}-1-benzothiophene-2-carboxamide (SAG-1.3) (agonist) and [(3)H]cyclopamine (antagonist), was characterized using human Smo expressed in human embryonic kidney 293F membranes. We observed full displacement of [(3)H]cyclopamine by all Smo agonist and antagonist ligands examined. N-[(1E)-(3,5-Dimethyl-1-phenyl-1H-pyrazol-4-yl)methylidene]-4-(phenylmethyl)-1-piperazinamine (SANT-1), an antagonist, did not fully inhibit the binding of [(3)H]SAG-1.3. In a functional cell-based beta-lactamase reporter gene assay, SANT-1 and N-[3-(1H-benzimidazol-2-yl)-4-chlorophenyl]-3,4,5-tris(ethyloxy)-benzamide (SANT-2) fully inhibited 3-chloro-4,7-difluoro-N-[trans-4-(methylamino)cyclohexyl]-N-{\{}[3-(4-pyridinyl)phenyl]methyl{\}}-1-benzothiophene-2-carboxamide (SAG-1.5)-induced Hh pathway activation. Detailed Schild-type" radioligand binding analysis with [(3)H]SAG-1.3 revealed that two structurally distinct Smoothened receptor antagonists SANT-1 and SANT-2 bound in a manner consistent with that of allosteric modulation. Our mechanism of action characterization of radioligand binding to Smo combined with functional data provides a better understanding of small-molecule interactions with Smo and their influence on the Hh pathway."

更多信息

更多信息
Molecular Weight 373.5 g/mol
Cas Number 304909-07-7
Chemical Formula C23H27N5
纯度 ≥ 98%
Target SMO
Pathway Hedgehog
质量保证:

产品仅供研究使用,不用于针对人或动物的诊断或治疗。 欲获悉更多关于STEMCELL的质控信息,请访问 STEMCELL.CN/COMPLIANCE.
Copyright © 2025 by STEMCELL Technologies. All rights reserved.