Gasparetto M et al. (OCT 2012)
Experimental hematology 40 10 857--66.e5
Varying levels of aldehyde dehydrogenase activity in adult murine marrow hematopoietic stem cells are associated with engraftment and cell cycle status.
Aldehyde dehydrogenase (ALDH) activity is a widely used marker for human hematopoietic stem cells (HSCs),yet its relevance and role in murine HSCs remain unclear. We found that murine marrow cells with a high level of ALDH activity as measured by Aldefluor staining (ALDH(br) cells) do not contain known HSCs or progenitors. In contrast,highly enriched murine HSCs defined by the CD48(-)EPCR(+) and other phenotypes contain two subpopulations,one that stains dimly with Aldefluor (ALDH(dim)) and one that stains at intermediate levels (ALDH(int)). The CD48(-)EPCR(+)ALDH(dim) cells are virtually all in G(0) and yield high levels of engraftment via both intravenous and intrabone routes. In contrast the CD48(-)EPCR(+)ALDH(int) cells are virtually all in G(1),have little intravenous engraftment potential,and yet can engraft long-term after intrabone transplantation. These data demonstrate that Aldefluor staining of unfractionated murine marrow does not identify known HSCs or progenitors. However,varying levels of Aldefluor staining when combined with CD48 and EPCR detection can identify novel populations in murine marrow including a highly enriched population of resting HSCs and a previously unknown HSC population in G(1) with an intravenous engraftment defect.
View Publication
Larrivé et al. (JUN 2003)
The Journal of biological chemistry 278 24 22006--13
Vascular endothelial growth factor (VEGF) and its receptors play an essential role in the formation and maintenance of the hematopoietic and vascular compartments. The VEGF receptor-2 (VEGFR-2) is expressed on a population of hematopoietic cells,although its role in hematopoiesis is still unclear. In this report,we have utilized a strategy to selectively activate VEGFR-2 and study its effects in primary bone marrow cells. We found that VEGFR-2 can maintain the hematopoietic progenitor population in mouse bone marrow cultured in the absence of exogenous cytokines. Maintenance of the hematopoietic progenitor population is due to increased cell survival with minimal effect on proliferation. Progenitor survival is mainly mediated by activation of the phosphatidylinositol 3'-kinase/Akt pathway. Although VEGFR-2 also activated Erk1/2 mitogen-activated protein kinase,it did not induce cell proliferation,and blockade of this pathway only partially decreased VEGFR-2-mediated survival of hematopoietic progenitors. Thus,the role of VEGFR-2 in hematopoiesis is likely to maintain survival of hematopoietic progenitors through the activation of antiapoptotic pathways.
View Publication
Risau W et al. (MAR 1988)
Development (Cambridge,England) 102 3 471--8
Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies.
Embryonic stem cells (ESC) have been established previously from the inner cell mass cells of mouse blastocysts. In suspension culture,they spontaneously differentiate to blood-island-containing cystic embryoid bodies (CEB). The development of blood vessels from in situ differentiating endothelial cells of blood islands,a process which we call vasculogenesis,was induced by injecting ESC into the peritoneal cavity of syngeneic mice. In the peritoneum,fusion of blood islands and formation of an in vivo-like primary capillary plexus occurred. Transplantation of ESC and ESC-derived complex and cystic embryoid bodies (ESC-CEB) onto the quail chorioallantoic membrane (CAM) induced an angiogenic response,which was directed by nonyolk sac endoderm structures. Neither yolk sac endoderm from ESC-CEB nor normal mouse yolk sac tissue induced angiogenesis on the quail CAM. Extracts from ESC-CEB stimulated the proliferation of capillary endothelial cells in vitro. Mitogenic activity increase during in vitro culture and differentiation of ESC. Almost all growth factor activity was associated with the cells. The ESC-CEB derived endothelial cell growth factor bound to heparin-sepharose. The identification of acidic fibroblast growth factor (FGF)in heparin-sepharose-purified material was accomplished by immunoblot experiments involving antibodies against acidic and basic FGF. We conclude that vasculogenesis,the development of blood vessels from in situ differentiating endothelial cells,and angiogenesis,the sprouting of capillaries from preexisting vessels are very early events during embryogenesis which can be studied using ESC differentiating in vitro. Our results suggest that vasculogenesis and angiogenesis are differently regulated.
View Publication
Mohamad O et al. (MAY 2013)
PLoS ONE 8 5 e64160
Vector-Free and Transgene-Free Human iPS Cells Differentiate into Functional Neurons and Enhance Functional Recovery after Ischemic Stroke in Mice
Stroke is a leading cause of human death and disability in the adult population in the United States and around the world. While stroke treatment is limited,stem cell transplantation has emerged as a promising regenerative therapy to replace or repair damaged tissues and enhance functional recovery after stroke. Recently,the creation of induced pluripotent stem (iPS) cells through reprogramming of somatic cells has revolutionized cell therapy by providing an unlimited source of autologous cells for transplantation. In addition,the creation of vector-free and transgene-free human iPS (hiPS) cells provides a new generation of stem cells with a reduced risk of tumor formation that was associated with the random integration of viral vectors seen with previous techniques. However,the potential use of these cells in the treatment of ischemic stroke has not been explored. In the present investigation,we examined the neuronal differentiation of vector-free and transgene-free hiPS cells and the transplantation of hiPS cell-derived neural progenitor cells (hiPS-NPCs) in an ischemic stroke model in mice. Vector-free hiPS cells were maintained in feeder-free and serum-free conditions and differentiated into functional neurons in vitro using a newly developed differentiation protocol. Twenty eight days after transplantation in stroke mice,hiPS-NPCs showed mature neuronal markers in vivo. No tumor formation was seen up to 12 months after transplantation. Transplantation of hiPS-NPCs restored neurovascular coupling,increased trophic support and promoted behavioral recovery after stroke. These data suggest that using vector-free and transgene-free hiPS cells in stem cell therapy are safe and efficacious in enhancing recovery after focal ischemic stroke in mice.
View Publication
Lin S et al. (JAN 2010)
Journal of visualized experiments : JoVE 39 11330
Video bioinformatics analysis of human embryonic stem cell colony growth.
Because video data are complex and are comprised of many images,mining information from video material is difficult to do without the aid of computer software. Video bioinformatics is a powerful quantitative approach for extracting spatio-temporal data from video images using computer software to perform dating mining and analysis. In this article,we introduce a video bioinformatics method for quantifying the growth of human embryonic stem cells (hESC) by analyzing time-lapse videos collected in a Nikon BioStation CT incubator equipped with a camera for video imaging. In our experiments,hESC colonies that were attached to Matrigel were filmed for 48 hours in the BioStation CT. To determine the rate of growth of these colonies,recipes were developed using CL-Quant software which enables users to extract various types of data from video images. To accurately evaluate colony growth,three recipes were created. The first segmented the image into the colony and background,the second enhanced the image to define colonies throughout the video sequence accurately,and the third measured the number of pixels in the colony over time. The three recipes were run in sequence on video data collected in a BioStation CT to analyze the rate of growth of individual hESC colonies over 48 hours. To verify the truthfulness of the CL-Quant recipes,the same data were analyzed manually using Adobe Photoshop software. When the data obtained using the CL-Quant recipes and Photoshop were compared,results were virtually identical,indicating the CL-Quant recipes were truthful. The method described here could be applied to any video data to measure growth rates of hESC or other cells that grow in colonies. In addition,other video bioinformatics recipes can be developed in the future for other cell processes such as migration,apoptosis,and cell adhesion.
View Publication
Ohmori T et al. (OCT 2010)
The Journal of biological chemistry 285 41 31763--73
Vinculin is indispensable for repopulation by hematopoietic stem cells, independent of integrin function.
Vinculin is a highly conserved actin-binding protein that is localized in integrin-mediated focal adhesion complexes. Although critical roles have been proposed for integrins in hematopoietic stem cell (HSC) function,little is known about the involvement of intracellular focal adhesion proteins in HSC functions. This study showed that the ability of c-Kit(+)Sca1(+)Lin(-) HSCs to support reconstitution of hematopoiesis after competitive transplantation was severely impaired by lentiviral transduction with short hairpin RNA sequences for vinculin. The potential of these HSCs to differentiate into granulocytic and monocytic lineages,to migrate toward stromal cell-derived factor 1α,and to home to the bone marrow in vivo were not inhibited by the loss of vinculin. However,the capacities to form long term culture-initiating cells and cobblestone-like areas were abolished in vinculin-silenced c-Kit(+)Sca1(+)Lin(-) HSCs. In contrast,adhesion to the extracellular matrix was inhibited by silencing of talin-1,but not of vinculin. Whole body in vivo luminescence analyses to detect transduced HSCs confirmed the role of vinculin in long term HSC reconstitution. Our results suggest that vinculin is an indispensable factor determining HSC repopulation capacity,independent of integrin functions.
View Publication
Esteban MA et al. (JAN 2010)
Cell stem cell 6 1 71--9
Vitamin C enhances the generation of mouse and human induced pluripotent stem cells.
Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by defined factors. However,the low efficiency and slow kinetics of the reprogramming process have hampered progress with this technology. Here we report that a natural compound,vitamin C (Vc),enhances iPSC generation from both mouse and human somatic cells. Vc acts at least in part by alleviating cell senescence,a recently identified roadblock for reprogramming. In addition,Vc accelerates gene expression changes and promotes the transition of pre-iPSC colonies to a fully reprogrammed state. Our results therefore highlight a straightforward method for improving the speed and efficiency of iPSC generation and provide additional insights into the mechanistic basis of the reprogramming process.
View Publication
Kumagai T et al. (JUN 2003)
Journal of the National Cancer Institute 95 12 896--905
Vitamin D2 analog 19-nor-1,25-dihydroxyvitamin D2: antitumor activity against leukemia, myeloma, and colon cancer cells.
BACKGROUND: 1,25-Dihydroxyvitamin D(3) inhibits growth of several types of human cancer cells in vitro,but its therapeutic use is hampered because it causes hypercalcemia. 19-nor-1,25-Dihydroxyvitamin D(2) (paricalcitol) is a noncalcemic vitamin D analog that is approved by the Food and Drug Administration for the treatment of secondary hyperparathyroidism. We investigated the antitumor activity and mechanism of action of paricalcitol in vitro and in vivo. METHODS: Effects of paricalcitol on proliferation,the cell cycle,differentiation,and apoptosis were examined in cancer cell lines. Effects on tumor growth were examined with colon cancer cell xenografts in nude mice (five in the experimental group and five in the control group). The interaction of paricalcitol with the vitamin D receptor (VDR) in mononuclear spleen cells and myeloid stem cells from wild-type and VDR knockout mice was examined. All statistical tests were two-sided. RESULTS: Paricalcitol inhibited the proliferation of myeloid leukemia cell lines HL-60,NB-4,and THP-1 cells at an effective dose that inhibited growth 50% (ED(50)) of 2.4-5.8 x 10(-9) M by inducing cell cycle arrest and differentiation. Paricalcitol inhibited the proliferation of NCI-H929 myeloma cells at an ED(50) of 2.0 x 10(-10) M by inducing cell cycle arrest and apoptosis. Paricalcitol also inhibited the proliferation of colon cancer cell lines HT-29 (ED(50) = 1.7 x 10(-8) M) and SW837 (ED(50) = 3.2 x 10(-8) M). HT-29 colon cancer xenografts in paricalcitol-treated nude mice were smaller (1044 mm(3) and 1752 mm(3),difference = 708 mm(3),95% confidence interval = 311 to 1104 mm(3); P =.03) and weighed less (1487 mg and 4162 mg,difference = 2675 mg,95% confidence interval = 2103 to 3248 mg; Ptextless.001) than those in vehicle-treated mice. Paricalcitol induced committed myeloid hematopoietic stem cells from wild-type but not from VDR knockout mice to differentiate as macrophages. CONCLUSION: Paricalcitol has anticancer activity against myeloid leukemia,myeloma,and colon cancer cells that may be mediated through the VDR. Because it has been approved by the Food and Drug Administration,clinical trials of this agent in certain cancers are reasonable.
View Publication
Alshawaf AJ et al. ( 2017)
Stem cells international 2017 7848932
WDR62 Regulates Early Neural and Glial Progenitor Specification of Human Pluripotent Stem Cells.
Mutations in WD40-repeat protein 62 (WDR62) are commonly associated with primary microcephaly and other developmental cortical malformations. We used human pluripotent stem cells (hPSC) to examine WDR62 function during human neural differentiation and model early stages of human corticogenesis. Neurospheres lacking WDR62 expression showed decreased expression of intermediate progenitor marker,TBR2,and also glial marker,S100β. In contrast,inhibition of c-Jun N-terminal kinase (JNK) signalling during hPSC neural differentiation induced upregulation of WDR62 with a corresponding increase in neural and glial progenitor markers,PAX6 and EAAT1,respectively. These findings may signify a role of WDR62 in specifying intermediate neural and glial progenitors during human pluripotent stem cell differentiation.
View Publication