Jo H et al. ( 2011)
Proceedings of the National Academy of Sciences of the United States of America 108 16 6486--6491
Deactivation of Akt by a small molecule inhibitor targeting pleckstrin homology domain and facilitating Akt ubiquitination.
The phosphatidylinositol-3,4,5-triphosphate (PIP3) binding function of pleckstrin homology (PH) domain is essential for the activation of oncogenic Akt/PKB kinase. Following the PIP3-mediated activation at the membrane,the activated Akt is subjected to other regulatory events,including ubiquitination-mediated deactivation. Here,by identifying and characterizing an allosteric inhibitor,SC66,we show that the facilitated ubiquitination effectively terminates Akt signaling. Mechanistically,SC66 manifests a dual inhibitory activity that directly interferes with the PH domain binding to PIP3 and facilitates Akt ubiquitination. A known PH domain-dependent allosteric inhibitor,which stabilizes Akt,prevents the SC66-induced Akt ubiquitination. A cancer-relevant Akt1 (e17k) mutant is unstable,making it intrinsically sensitive to functional inhibition by SC66 in cellular contexts in which the PI3K inhibition has little inhibitory effect. As a result of its dual inhibitory activity,SC66 manifests a more effective growth suppression of transformed cells that contain a high level of Akt signaling,compared with other inhibitors of PIP3/Akt pathway. Finally,we show the anticancer activity of SC66 by using a soft agar assay as well as a mouse xenograft tumor model. In conclusion,in this study,we not only identify a dual-function Akt inhibitor,but also demonstrate that Akt ubiquitination could be chemically exploited to effectively facilitate its deactivation,thus identifying an avenue for pharmacological intervention in Akt signaling.
View Publication
Defective ribosomal protein gene expression alters transcription, translation, apoptosis, and oncogenic pathways in Diamond-Blackfan anemia.
Diamond-Blackfan anemia (DBA) is a broad developmental disease characterized by anemia,bone marrow (BM) erythroblastopenia,and an increased incidence of malignancy. Mutations in ribosomal protein gene S19 (RPS19) are found in approximately 25% of DBA patients; however,the role of RPS19 in the pathogenesis of DBA remains unknown. Using global gene expression analysis,we compared highly purified multipotential,erythroid,and myeloid BM progenitors from RPS19 mutated and control individuals. We found several ribosomal protein genes downregulated in all DBA progenitors. Apoptosis genes,such as TNFRSF10B and FAS,transcriptional control genes,including the erythropoietic transcription factor MYB (encoding c-myb),and translational genes were greatly dysregulated,mostly in diseased erythroid cells. Cancer-related genes,including RAS family oncogenes and tumor suppressor genes,were significantly dysregulated in all diseased progenitors. In addition,our results provide evidence that RPS19 mutations lead to codownregulation of multiple ribosomal protein genes,as well as downregulation of genes involved in translation in DBA cells. In conclusion,the altered expression of cancer-related genes suggests a molecular basis for malignancy in DBA. Downregulation of c-myb expression,which causes complete failure of fetal liver erythropoiesis in knockout mice,suggests a link between RPS19 mutations and reduced erythropoiesis in DBA.
View Publication
Miyoshi N et al. (JAN 2010)
Proceedings of the National Academy of Sciences of the United States of America 107 1 40--5
Defined factors induce reprogramming of gastrointestinal cancer cells.
Although cancer is a disease with genetic and epigenetic origins,the possible effects of reprogramming by defined factors remain to be fully understood. We studied the effects of the induction or inhibition of cancer-related genes and immature status-related genes whose alterations have been reported in gastrointestinal cancer cells. Retroviral-mediated introduction of induced pluripotent stem (iPS) cell genes was necessary for inducing the expression of immature status-related proteins,including Nanog,Ssea4,Tra-1-60,and Tra-1-80 in esophageal,stomach,colorectal,liver,pancreatic,and cholangiocellular cancer cells. Induced cells,but not parental cells,possessed the potential to express morphological patterns of ectoderm,mesoderm,and endoderm,which was supported by epigenetic studies,indicating methylation of DNA strands and the histone H3 protein at lysine 4 in promoter regions of pluripotency-associated genes such as NANOG. In in vitro analysis induced cells showed slow proliferation and were sensitized to differentiation-inducing treatment,and in vivo tumorigenesis was reduced in NOD/SCID mice. This study demonstrated that pluripotency was manifested in induced cells,and that the induced pluripotent cancer (iPC) cells were distinct from natural cancer cells with regard to their sensitivity to differentiation-inducing treatment. Retroviral-mediated introduction of iPC cells confers higher sensitivity to chemotherapeutic agents and differentiation-inducing treatment.
View Publication
Hirano I et al. (AUG 2009)
The Journal of biological chemistry 284 33 22155--65
Depletion of Pleckstrin homology domain leucine-rich repeat protein phosphatases 1 and 2 by Bcr-Abl promotes chronic myelogenous leukemia cell proliferation through continuous phosphorylation of Akt isoforms.
The constitutive activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway commonly occurs in cancers and is a crucial event in tumorigenesis. Chronic myelogenous leukemia (CML) is characterized by a reciprocal chromosomal translocation (9;22) that generates the Bcr-Abl fusion gene. The PI3K/Akt pathway is activated by Bcr-Abl chimera protein and mediates the leukemogenesis in CML. However,the mechanism by which Bcr-Abl activates the PI3K/Akt pathway is not completely understood. In the present study,we found that pleckstrin homology domain leucine-rich repeat protein phosphatases 1 and 2 (PHLPP1 and PHLPP2) were depleted in CML cells. We investigated the interaction between PHLPPs and Bcr-Abl in CML cell lines and Bcr-Abl+ progenitor cells from CML patients. The Abl kinase inhibitors and depletion of Bcr-Abl induced the expression of PHLPP1 and PHLPP2,which dephosphorylated Ser-473 on Akt1,-2,and -3,resulting in inhibited proliferation of CML cells. The reduction of PHLPP1 and PHLPP2 expression by short interfering RNA in CML cells weakened the Abl kinase inhibitor-mediated inhibition of proliferation. In colony-forming unit-granulocyte,erythroid,macrophage,megakaryocyte; colony-forming unit-granulocyte,macrophage; and burst-forming unit-erythroid,treatment with the Abl kinase inhibitors and depletion of Bcr-Abl induced PHLPP1 and PHLPP2 expression and inhibited colony formation of Bcr-Abl+ progenitor cells,whereas depletion of PHLPP1 and PHLPP2 weakened the inhibition of colony formation activity by the Abl kinase inhibitors in Bcr-Abl+ progenitor cells. Thus,Bcr-Abl represses the expression of PHLPP1 and PHLPP2 and continuously activates Akt1,-2,and -3 via phosphorylation on Ser-473,resulting in the proliferation of CML cells.
View Publication
Naume B et al. (JAN 2004)
Cytotherapy 6 3 244--52
Detection of isolated tumor cells in peripheral blood and in BM: evaluation of a new enrichment method.
Cell enrichment methods that deal with larger volumes of peripheral blood and BM are needed for increased sensitivity of detection,characterization and quantification of isolated tumor cells (ITC). This study was designed to evaluate a new procedure,the RosetteSep-Applied Imaging Rare Event (RARE) detection method,which depletes the majority of the erythrocytes and leucocytes in a peripheral blood (PB) sample,thereby negatively enriching tumor cells if present. This enrichment procedure allows for increased sensitivity,by analyzing a 5-10 fold larger volume of blood,compared with a direct immunocytochemical (ICC) technique,with minimal impact on laboratory workload. Model experiments showed comparable tumor cell recoveries between the two tested methods,both in PB and BM. Clinical samples were evaluated using paired PB and BM samples from 95 carcinoma patients. Analysis of PB results showed that 25.3% had textgreater or = 1 tumor cell detected by the RARE procedure,compared with 5.2% after direct ICC analysis,analyzing a 10-fold larger volume by the RARE procedure. The direct ICC analysis of BM from the same patients revealed 16.8% positive. The ITC detection differed both quantitatively and qualitatively between BM and PB,as samples with high numbers of ITC in BM were still negative in PB. The clinical significance of ITC in blood still needs to be established. However,the easy access of peripheral blood,and the increased sensitivity obtained by increasing the sample volume with the RARE procedure,suggests that the value of peripheral blood analysis should be tested in parallel in studies where ITC detection in BM is performed.
View Publication
Guan Y et al. (APR 2003)
Blood 101 8 3142--9
Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML).
Although many acute myeloid leukemia (AML) colony-forming cells (CFCs) and long-term culture-initiating cells (LTC-ICs) directly isolated from patients are actively cycling,quiescent progenitors are present in most samples. In the current study,(3)H-thymidine ((3)H-Tdr) suicide assays demonstrated that most NOD/SCID mouse leukemia-initiating cells (NOD/SL-ICs) are quiescent in 6 of 7 AML samples. AML cells in G(0),G(1),and S/G(2)+M were isolated from 4 of these samples using Hoechst 33342/pyroninY staining and cell sorting. The progenitor content of each subpopulation was consistent with the (3)H-Tdr suicide results,with NOD/SL-ICs found almost exclusively among G(0) cells while the cycling status of AML CFCs and LTC-ICs was more heterogeneous. Interestingly,after 72 hours in serum-free culture with or without Steel factor (SF),Flt-3 ligand (FL),and interleukin-3 (IL-3),most G(0) AML cells entered active cell cycle (percentage of AML cells remaining in G(0) at 72 hours,1.2% to 37%,and 0% to 7.6% in cultures without and with growth factors [GFs],respectively) while G(0) cells from normal lineage-depleted bone marrow remained quiescent in the absence of GF. All 4 AML samples showed evidence of autocrine production of 2 or more of SF,FL,IL-3,and granulocyte-macrophage colony-stimulating factor (GM-CSF). In addition,3 of 4 samples contained an internal tandem duplication of the FLT3 gene. In summary,quiescent leukemic cells,including NOD/SL-ICs,are present in most AML patients. Their spontaneous entry into active cell cycle in short-term culture might be explained by the deregulated GF signaling present in many AMLs.
View Publication
Stern HM et al. (MAR 2010)
Clinical Cancer Research 16 5 1587--96
Development of immunohistochemistry assays to assess GALNT14 and FUT3/6 in clinical trials of dulanermin and drozitumab
PURPOSE: In vitro sensitivity to the proapoptotic receptor agonists dulanermin (rhApo2L/TRAIL) and drozitumab (DR5-agonist antibody) is strongly predicted by the expression of the O-glycosylation enzymes GALNT14 in non-small cell lung cancer (NSCLC) cell lines (among others) and of FUT3/6 in colorectal cancer (CRC) cell lines. We developed immunohistochemistry (IHC) assays that measure GALNT14 and FUT3/6 levels in archival formalin-fixed,paraffin-embedded human tumor tissue to determine marker prevalence in NSCLC and CRC tissue and to enable the future examination of these markers in clinical trials. EXPERIMENTAL DESIGN: GALNT14 or FUT3/6 ELISA-positive hybridoma clones were screened through IHC on cell pellets with known mRNA levels. The specificity of staining was examined in cell lines,normal tissue,and tumor tissue. RESULTS: GALNT14 and FUT3/6 IHC exhibited a golgi staining pattern and correlated with GALNT14 and FUT3/6 (but not GALNT2 and FUT4) mRNA expression levels in cell lines and normal tissues,suggesting specificity. GALNT14 and FUT3/6 H-scores were significantly higher in cell lines sensitive to dulanermin (P = 0.01 and P = 0.0004,respectively) and drozitumab (P = 0.03 and P textless 0.0001,respectively) versus resistant cell lines. GALNT14 and FUT3/6 H-scores varied widely,with approximately 45% of NSCLC samples exhibiting weak to moderate GALNT14 staining (H-score of at least 25) and 70% of CRC samples exhibiting moderate to strong FUT3/6 staining (H-score of at least 125). CONCLUSIONS: GALNT14 and FUT3/6 expression can be assessed in human tumors using sensitive and specific IHC assays. Both assays are being deployed in ongoing clinical trials of dulanermin and drozitumab to assess potential utility for patient selection.
View Publication
Pereira WdO et al. (OCT 2013)
BMC research notes 6 433
Development of plasma cell myeloma in a B-cell chronic lymphocytic leukemia patient with chromosome 12 trisomy.
BACKGROUND Cancer development results from the progressive accumulation of genomic abnormalities that culminate in the neoplastic phenotype. Cytogenetic alterations,mutations and rearrangements may be considered as molecular legacy which trace the clonal history of the disease. Concomitant tumors are reported and they may derive from a common or divergent founder clone. B-cell chronic lymphocytic leukemia (B-CLL) and plasma cell myeloma (PCM) are both mature B-cell neoplasms,and their concomitancy,albeit rare,is documented. CASE PRESENTATION Here,we described a patient with prior B-CLL with secondary development of PCM. Cytogenetic and multi parametric flow cytometry analyses were performed. The B-CLL population presented chromosome 12 trisomy,unlikely the arisen PCM population. CONCLUSION The close follow up of B-CLL patients is important for early intervention in case of development of other malignancy,such as myeloma. Our observation suggests these two diseases may have arisen from different clones. We understand that the investigation of clonal origin may provide important information regarding therapeutic decisions,and should be considered in concomitant neoplasm.
View Publication
Dedhia PH et al. (AUG 2010)
Blood 116 8 1321--8
Differential ability of Tribbles family members to promote degradation of C/EBPalpha and induce acute myelogenous leukemia.
Trib1,Trib2,and Trib3 are mammalian homologs of Tribbles,an evolutionarily conserved Drosophila protein family that mediates protein degradation. Tribbles proteins function as adapters to recruit E3 ubiquitin ligases and enhance ubiquitylation of the target protein to promote its degradation. Increased Trib1 and Trib2 mRNA expression occurs in human myeloid leukemia and induces acute myeloid leukemia in mice,whereas Trib3 has not been associated with leukemia. Given the high degree of structural conservation among Tribbles family members,we directly compared the 3 mammalian Tribbles in hematopoietic cells by reconstituting mice with hematopoietic stem cells retrovirally expressing these proteins. All mice receiving Trib1 or Trib2 transduced hematopoietic stem cells developed acute myeloid leukemia,whereas Trib3 mice did not. Our previous data indicated that Trib2-mediated degradation of the transcription factor,CCAAT/enhancer-binding protein-alpha (C/EBPalpha),is important for leukemogenesis. Similar to Trib2,Trib1 induced C/EBPalpha degradation and inhibited its function. In contrast,Trib3 failed to inactivate or promote efficient degradation of C/EBPalpha. These data reveal that the 3 Tribbles homologs differ in their ability to promote degradation of C/EBPalpha,which account for their differential ability to induce leukemia.
View Publication
Pineault N et al. (MAR 2004)
Molecular and cellular biology 24 5 1907--17
Differential and common leukemogenic potentials of multiple NUP98-Hox fusion proteins alone or with Meis1.
NUP98-Hox fusion genes are newly identified oncogenes isolated in myeloid leukemias. Intriguingly,only Abd-B Hox genes have been reported as fusion partners,indicating that they may have unique overlapping leukemogenic properties. To address this hypothesis,we engineered novel NUP98 fusions with Hox genes not previously identified as fusion partners: the Abd-B-like gene HOXA10 and two Antennepedia-like genes,HOXB3 and HOXB4. Notably,NUP98-HOXA10 and NUP98-HOXB3 but not NUP98-HOXB4 induced leukemia in a murine transplant model,which is consistent with the reported leukemogenic potential ability of HOXA10 and HOXB3 but not HOXB4. Thus,the ability of Hox genes to induce leukemia as NUP98 fusion partners,although apparently redundant for Abd-B-like activity,is not restricted to this group,but rather is determined by the intrinsic leukemogenic potential of the Hox partner. We also show that the potent leukemogenic activity of Abd-B-like Hox genes is correlated with their strong ability to block hematopoietic differentiation. Conversely,coexpression of the Hox cofactor Meis1 alleviated the requirement of a strong intrinsic Hox-transforming potential to induce leukemia. Our results support a model in which many if not all Hox genes can be leukemogenic and point to striking functional overlap not previously appreciated,presumably reflecting common regulated pathways.
View Publication
Mahbub AA et al. (DEC 2013)
Anti-cancer agents in medicinal chemistry 13 10 1601--13
Differential effects of polyphenols on proliferation and apoptosis in human myeloid and lymphoid leukemia cell lines.
BACKGROUND Mortality rates for leukemia are high despite considerable improvements in treatment. Since polyphenols exert pro-apoptotic effects in solid tumors,our study investigated the effects of polyphenols in haematological malignancies. The effect of eight polyphenols (quercetin,chrysin,apigenin,emodin,aloe-emodin,rhein,cis-stilbene and trans-stilbene) were studied on cell proliferation,cell cycle and apoptosis in four lymphoid and four myeloid leukemic cells lines,together with normal haematopoietic control cells. METHODS Cellular proliferation was measured by CellTiter-Glo(®) luminescent assay; and cell cycle arrest was assessed using flow cytometry of propidium iodide stained cells. Apoptosis was investigated by caspase-3 activity assay using flow cytometry and apoptotic morphology was confirmed by Hoescht 33342 staining. RESULTS Emodin,quercetin,and cis-stilbene were the most effective polyphenols at decreasing cell viability (IC50 values of 5-22 μM,8-33 μM,and 25-85 μM respectively) and inducing apoptosis (AP50 values (the concentration which 50% of cells undergo apoptosis) of 2-27 μM,19-50 μM,and 8-50 μM respectively). Generally,lymphoid cell lines were more sensitive to polyphenol treatment compared to myeloid cell lines,however the most resistant myeloid (KG-1a and K562) cell lines were still found to respond to emodin and quercetin treatment at low micromolar levels. Non-tumor cells were less sensitive to all polyphenols compared to the leukemia cells. CONCLUSIONS These findings suggest that polyphenols have anti-tumor activity against leukemia cells with differential effects. Importantly,the differential sensitivity of emodin,quercetin,and cis-stilbene between leukemia and normal cells suggests that polyphenols are potential therapeutic agents for leukemia.
View Publication
Coffman KT et al. (NOV 2003)
Cancer Research 63 22 7907--12
Differential EphA2 epitope display on normal versus malignant cells.
The EphA2 receptor tyrosine kinase is overexpressed in many different types of human cancers where it functions as a powerful oncoprotein. Dramatic changes in the subcellular localization and function of EphA2 have also been linked with cancer,and in particular,unstable cancer cell-cell contacts prevent EphA2 from stably binding its ligand on the surface of adjoining cells. This change is important in light of evidence that ligand binding causes EphA2 to transmit signals that negatively regulate tumor cell growth and invasiveness and also induce EphA2 degradation. On the basis of these properties,we have begun to target EphA2 on tumor cells using agonistic antibodies,which mimic the consequences of ligand binding. In our present study,we show that a subset of agonistic EphA2 antibodies selectively bind epitopes on malignant cells,which are not available on nontransformed epithelial cells. We also show that such epitopes arise from differential cell-cell adhesions and that the stable intercellular junctions of nontransformed epithelial cells occlude the binding site for ligand,as well as this subset of EphA2 antibodies. Finally,we demonstrate that antibody targeting of EphA2 decreases tumor cell growth as measured using xenograft tumor models and found that the mechanism of antibody action relates to EphA2 protein degradation in vivo. Taken together,these results suggest new opportunities for therapeutic targeting of the large number of different cancers that express EphA2 in a manner that could minimize potential toxicities to normal cells.
View Publication