C. M. Sungur et al. (dec 2022)
The Journal of clinical investigation 132 24
Human NK cells confer protection against HIV-1 infection in humanized mice.
The role of NK cells against HIV-1 infections remains to be elucidated in vivo. While humanized mouse models potentially could be used to directly evaluate human NK cell responses during HIV-1 infection,improved functional development of human NK cells in these hosts is needed. Here,we report the humanized MISTRG-6-15 mouse model,in which NK cells were quick to expand and exhibit degranulation,cytotoxicity,and proinflammatory cytokine production in nonlymphoid organs upon HIV-1 infection but had reduced functionality in lymphoid organs. Although HIV-1 infection induced functional impairment of NK cells,antiretroviral therapy reinvigorated NK cells in response to HIV-1 rebound after analytic treatment interruption. Moreover,a broadly neutralizing antibody,PGT121,enhanced NK cell function in vivo,consistent with antibody-dependent cellular cytotoxicity. Monoclonal antibody depletion of NK cells resulted in higher viral loads in multiple nonlymphoid organs. Overall,our results in humanized MISTRG-6-15 mice demonstrated that NK cells provided direct anti-HIV-1 responses in vivo but were limited in their responses in lymphoid organs.
View Publication
文献
D. Gonz\'alez-Serna et al. (jun 2023)
Arthritis & rheumatology (Hoboken,N.J.) 75 6 1007--1020
Identification of Mechanisms by Which Genetic Susceptibility Loci Influence Systemic Sclerosis Risk Using Functional Genomics in Primary T Cells and Monocytes.
OBJECTIVE Systemic sclerosis (SSc) is a complex autoimmune disease with a strong genetic component. However,most of the genes associated with the disease are still unknown because associated variants affect mostly noncoding intergenic elements of the genome. We used functional genomics to translate the genetic findings into a better understanding of the disease. METHODS Promoter capture Hi-C and RNA-sequencing experiments were performed in CD4+ T cells and CD14+ monocytes from 10 SSc patients and 5 healthy controls to link SSc-associated variants with their target genes,followed by differential expression and differential interaction analyses between cell types. RESULTS We linked SSc-associated loci to 39 new potential target genes and confirmed 7 previously known SSc-associated genes. We highlight novel causal genes,such as CXCR5,as the most probable candidate gene for the DDX6 locus. Some previously known SSc-associated genes,such as IRF8,STAT4,and CD247,showed cell type-specific interactions. We also identified 15 potential drug targets already in use in other similar immune-mediated diseases that could be repurposed for SSc treatment. Furthermore,we observed that interactions were directly correlated with the expression of important genes implicated in cell type-specific pathways and found evidence that chromatin conformation is associated with genotype. CONCLUSION Our study revealed potential causal genes for SSc-associated loci,some of them acting in a cell type-specific manner,suggesting novel biologic mechanisms that might mediate SSc pathogenesis.
View Publication
文献
D. Kabelitz et al. (oct 2022)
Scientific reports 12 1 17827
Signal strength of STING activation determines cytokine plasticity and cell death in human monocytes.
The cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway is a cytosolic sensor of microbial and host-derived DNA and plays a key role in innate immunity. Activation of STING by cyclic dinucleotide (CDN) ligands in human monocytes induces a type I interferon response and production of pro-inflammatory cytokines associated with the induction of massive cell death. In this study we have re-evaluated the effect of signal strength of STING activation on the cytokine plasticity of human monocytes. CDN (2'3'c-GAMP) and non-CDN (diABZI,MSA-2) STING ligands in the range of EC50 concentrations (15 $\mu$M 2'3'c-GAMP,100 nM diABZI,25 $\mu$M MSA-2) induced IFN-$\beta$,IP-10,and large amounts of IL-1$\beta$ and TNF-$\alpha$,but no IL-10 or IL-19. Interestingly,LPS-induced production of IL-10 and IL-19 was abolished in the presence of diABZI or MSA-2,whereas IL-1$\beta$ and TNF-$\alpha$ were not inhibited. Surprisingly,we observed that tenfold lower (MSA-2,i.e. 2.5 $\mu$M) or 100-fold lower (diABZI,i.e. 1 nM) concentrations strongly stimulated secretion of anti-inflammatory IL-10 and IL-19,but little of IL-1$\beta$ and TNF-$\alpha$. Induction of IL-10 was associated with up-regulation of PRDM1 (Blimp-1). While cytokine secretion stimulated by the higher concentrations was accompanied by apoptosis as shown by cleavage of caspase-3 and PARP-1,the low concentrations did not trigger overt cell death yet induced cleavage of gasdermin-D. Our results reveal a previously unrecognized plasticity of human monocytes in their signal strength-dependent production of pro- versus anti-inflammatory cytokines upon STING activation.
View Publication
文献
J. R. Giles et al. (nov 2022)
Nature immunology 23 11 1600--1613
Shared and distinct biological circuits in effector, memory and exhausted CD8+ T cells revealed by temporal single-cell transcriptomics and epigenetics.
Na{\{i}}ve CD8+ T cells can differentiate into effector (Teff) memory (Tmem) or exhausted (Tex) T cells. These developmental pathways are associated with distinct transcriptional and epigenetic changes that endow cells with different functional capacities and therefore therapeutic potential. The molecular circuitry underlying these developmental trajectories and the extent of heterogeneity within Teff Tmem and Tex populations remain poorly understood. Here we used the lymphocytic choriomeningitis virus model of acute-resolving and chronic infection to address these gaps by applying longitudinal single-cell RNA-sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) analyses. These analyses uncovered new subsets including a subpopulation of Tex cells expressing natural killer cell-associated genes that is dependent on the transcription factor Zeb2 as well as multiple distinct TCF-1+ stem/progenitor-like subsets in acute and chronic infection. These data also revealed insights into the reshaping of Tex subsets following programmed death 1 (PD-1) pathway blockade and identified a key role for the cell stress regulator Btg1 in establishing the Tex population. Finally these results highlighted how the same biological circuits such as cytotoxicity or stem/progenitor pathways can be used by CD8+ T cell subsets with highly divergent underlying chromatin landscapes generated during different infections."
View Publication
文献
M. Jacobs et al. (oct 2022)
Respiratory research 23 1 287
IL-10 producing regulatory B cells are decreased in blood from smokers and COPD patients.
BACKGROUND Two opposing B cell subsets have been defined based on their cytokine profile: IL-6 producing effector B cells (B-effs) versus IL-10 producing regulatory B cells (B-regs) that respectively positively or negatively regulate immune responses. B-regs are decreased and/or impaired in many autoimmune diseases and inflammatory conditions. Since there is increasing evidence that links B cells and B cell-rich lymphoid follicles to the pathogenesis of COPD,the aim of this study was to investigate the presence and function of B-regs in COPD. METHODS First,presence of IL-10 producing regulatory B cells in human lung tissue was determined by immunohistochemistry. Secondly,quantification of IL-10??+??B-regs and IL-6??+??B-effs in peripheral blood mononuclear cells (PBMCs) from healthy controls,smokers without airflow limitation,and COPD patients (GOLD stage I-IV) was performed by flow cytometry. Thirdly,we exposed blood-derived B cells from COPD patients in vitro to cigarette smoke extract (CSE) and quantified IL-10??+??B-regs and IL-6??+??B-effs. Furthermore,we aimed at restoring the perturbed IL10 production by blocking BAFF. Fourthly,we determined mRNA expression of transcription factors involved in IL-10 production in FACS sorted memory- and naive B cells upon exposure to medium or CSE. RESULTS The presence of IL-10 producing regulatory B cells in parenchyma and lymphoid follicles in lungs was confirmed by immunohistochemistry. The percentage of IL-10??+??B-regs was significantly decreased in blood-derived memory B cell subsets from smokers without airflow limitation and patients with COPD,compared to never smokers. Furthermore,the capacity of B cells to produce IL-10 was reduced upon in vitro exposure to CSE and this could not be restored by BAFF-blockade. Finally,upon CSE exposure,mRNA levels of the transcription factors IRF4 and HIF-1$\alpha$,were decreased in memory B cells. CONCLUSION Decreased numbers and impaired function of B-regs in smokers and patients with COPD might contribute to the initiation and progression of the disease.
View Publication
文献
J. Abraham-Miranda et al. ( 2022)
Frontiers in immunology 13 1007042
CAR-T manufactured from frozen PBMC yield efficient function with prolonged in vitro production.
Chimeric antigen receptor (CAR)-T cells are engineered to identify and eliminate cells expressing a target antigen. Current manufacturing protocols vary between commercial CAR-T cell products warranting an assessment of these methods to determine which approach optimally balances successful manufacturing capacity and product efficacy. One difference between commercial product manufacturing methods is whether T cell engineering begins with fresh (unfrozen) patient cells or cells that have been cryopreserved prior to manufacture. Starting with frozen PBMC material allows for greater manufacturing flexibility,and the possibility of collecting and storing blood from patients prior to multiple lines of therapy. We prospectively analyzed if second generation anti-CD19 CAR-T cells with either CD28 or 4-1BB co-stimulatory domains have different phenotype or function when prepared side-by-side using fresh or cryopreserved PBMCs. We found that cryopreserved PBMC starting material is associated with slower CAR-T cell expansion during manufacture but does not affect phenotype. We also demonstrate that CAR-T cell activation,cytokine production and in vitro anti-tumor cytotoxicity were not different when CAR-T cells were manufactured from fresh or cryopreserved PBMC. As CAR-T cell therapy expands globally,the need for greater flexibility around the timing of manufacture will continue to grow. This study helps support the concept that cryopreservation of PBMCs could be the solution to these issues without compromising the quality of the final CAR-T product.
View Publication
文献
Q. Haas et al. ( 2022)
Frontiers in immunology 13 996746
Siglec-7 represents a glyco-immune checkpoint for non-exhausted effector memory CD8+ T cells with high functional and metabolic capacities.
While inhibitory Siglec receptors are known to regulate myeloid cells,less is known about their expression and function in lymphocytes subsets. Here we identified Siglec-7 as a glyco-immune checkpoint expressed on non-exhausted effector memory CD8+ T cells that exhibit high functional and metabolic capacities. Seahorse analysis revealed higher basal respiration and glycolysis levels of Siglec-7+ CD8+ T cells in steady state,and particularly upon activation. Siglec-7 polarization into the T cell immune synapse was dependent on sialoglycan interactions in trans and prevented actin polarization and effective T cell responses. Siglec-7 ligands were found to be expressed on both leukemic stem cells and acute myeloid leukemia (AML) cells suggesting the occurrence of glyco-immune checkpoints for Siglec-7+ CD8+ T cells,which were found in patients' peripheral blood and bone marrow. Our findings project Siglec-7 as a glyco-immune checkpoint and therapeutic target for T cell-driven disorders and cancer.
View Publication
文献
H. W. Grievink et al. ( 2022)
Frontiers in immunology 13 968815
Cardiovascular risk factors: The effects of ageing and smoking on the immune system, an observational clinical study.
Currently immunomodulatory compounds are under investigation for use in patients with cardiovascular disease,caused by atherosclerosis. These trials,using recurrent cardiovascular events as endpoint,require enrollment of large patient groups. We investigated the effect of key risk factors for atherosclerosis development,ageing and smoking,on the immune system,with the objective to identify biomarkers differentiating between human populations,and potentially serving as endpoints for future phase 1B trials with immunomodulatory compounds. Blood was collected from young healthy volunteers (aged 18-25 years,n=30),young smokers (18-25 years,n=20),elderly healthy volunteers (>60 years,n=20),heavy smokers (>45 years,15 packyears,n=11) and patients with stable coronary artery disease (CAD) (>60 years,n=27). Circulating immune cell subsets were characterized by flow cytometry,and collected plasma was evaluated by proteomics (Olink). Clear ageing effects were observed,mostly illustrated by a lower level in CD8+ and na{\{i}}ve CD4+ and CD8+ T cells with an increase in CD4+ and CD8+ effector memory T cells in elderly healthy volunteers compared to young healthy volunteers. Heavy smokers showed a more inflammatory cellular phenotype especially a shift in Th1/Th2 ratio: higher Th1 and lower Th2 percentages compared to young healthy volunteers. A significant decrease in circulating atheroprotective oxLDL-specific IgM was found in patients with CAD compared to young healthy volunteers. Elevated pro-inflammatory and chemotactic proteins TREM1 and CCL11 were observed in elderly volunteers compared to young volunteers. In addition heavy smokers had an increase in pro-inflammatory cytokine IL-6 and lysosomal protein LAMP3. These data show that ageing and smoking are associated with an inflammatory immunophenotype and that heavy smokers or aged individuals may serve as potential populations for future clinical trials investigating immunomodulatory drugs targeted for cardiovascular disease."
View Publication
文献
E. Lucchinetti et al. (dec 2022)
The American journal of clinical nutrition 116 6 1805--1819
Novel lipid emulsion for total parenteral nutrition based on 18-carbon n-3 fatty acids elicits a superior immunometabolic phenotype in a murine model compared with standard lipid emulsions.
BACKGROUND While lipid emulsions in modern formulations for total parenteral nutrition (TPN) provide essential fatty acids and dense calories,they also promote inflammation and immunometabolic disruptions. OBJECTIVES We aimed to develop a novel lipid emulsion for TPN use with superior immunometabolic actions compared with available standard lipid emulsions. METHODS A novel lipid emulsion [Vegaven (VV)] containing 30% of 18-carbon n-3 fatty acids ($\alpha$-linolenic acid and stearidonic acid) was developed for TPN (VV-TPN) and compared with TPN containing soybean oil-based lipid emulsion (IL-TPN) and fish-oil-based lipid emulsion (OV-TPN). In vivo studies were performed in instrumented male C57BL/6 mice subjected to 7-d TPN prior to analysis of cytokines,indices of whole-body and hepatic glucose metabolism,immune cells,lipid mediators,and mucosal bowel microbiome. RESULTS IL-6 to IL-10 ratios were significantly lower in liver and skeletal muscle of VV-TPN mice when compared with IL-TPN or OV-TPN mice. VV-TPN and OV-TPN each increased hepatic insulin receptor abundance and resulted in similar HOMA-IR values,whereas only VV-TPN increased hepatic insulin receptor substrate 2 and maintained normal hepatic glycogen content,effects that were IL-10-dependent and mediated by glucokinase activation. The percentages of IFN-$\gamma$- and IL-17-expressing CD4+ T cells were increased in livers of VV-TPN mice,and liver macrophages exhibited primed phenotypes when compared with IL-TPN. This immunomodulation was associated with successful elimination of the microinvasive bacterium Akkermansia muciniphila from the bowel mucosa by VV-TPN as opposed to standard lipid emulsions. Assay of hepatic lipid mediators revealed a distinct profile with VV-TPN,including increases in 9(S)-hydroxy-octadecatrienoic acid. When co-administered with IL-TPN,hydroxy-octadecatrienoic acids mimicked the VV-TPN immunometabolic phenotype. CONCLUSIONS We here report the unique anti-inflammatory,insulin-sensitizing,and immunity-enhancing properties of a newly developed lipid emulsion designed for TPN use based on 18-carbon n-3 fatty acids.
View Publication
文献
A. R. Lefferts et al. ( 2022)
Frontiers in immunology 13 932393
Cytokine competent gut-joint migratory T Cells contribute to inflammation in the joint.
Although studies have identified the presence of gut-associated cells in the enthesis of joints affected by spondylarthritis (SpA),a direct link through cellular transit between the gut and joint has yet to be formally demonstrated. Using KikGR transgenic mice to label in situ and track cellular trafficking from the distal colon to the joint under inflammatory conditions of both the gut and joint,we demonstrate bona-fide gut-joint trafficking of T cells from the colon epithelium,also called intraepithelial lymphocytes (IELs),to distal sites including joint enthesis,the pathogenic site of SpA. Similar to patients with SpA,colon IELs from the TNF$\Delta$ARE/+ mouse model of inflammatory bowel disease and SpA display heightened TNF production upon stimulation. Using ex vivo stimulation of photo-labeled gut-joint trafficked T cells from the popliteal lymph nodes of KikGR and KikGR TNF$\Delta$ARE/+ we saw that the CD4+ photo-labeled population was highly enriched for IL-17 competence in healthy as well as arthritic mice,however in the TNF$\Delta$ARE/+ mice these cells were additionally enriched for TNF. Using transfer of magnetically isolated IELs from TNF+/+ and TNF$\Delta$ARE/+ donors into Rag1 -/- hosts,we confirmed that IELs can exacerbate inflammatory processes in the joint. Finally,we blocked IEL recruitment to the colon epithelium using broad spectrum antibiotics in TNF$\Delta$ARE/+ mice. Antibiotic-treated mice had reduced gut-joint IEL migration,contained fewer Il-17A and TNF competent CD4+ T cells,and lessened joint pathology compared to untreated littermate controls. Together these results demonstrate that pro-inflammatory colon-derived IELs can exacerbate inflammatory responses in the joint through systemic trafficking,and that interference with this process through gut-targeted approaches has therapeutic potential in SpA.
View Publication
文献
M. Takehara et al. (dec 2022)
Biochimica et biophysica acta. Biomembranes 1864 12 184054
Clostridium perfringens $\alpha$-toxin up-regulates plasma membrane CD11b expression on murine neutrophils by changing intracellular localization.
Gas gangrene caused by Clostridium perfringens type A infection is a highly lethal infection of soft tissue characterized by rapid spread of tissue necrosis. This tissue destruction is related to profound attenuation of blood flow accompanied by formation of platelet-leukocyte aggregates in the blood vessels. Several studies have identified $\alpha$-toxin,which has both sphingomyelinase and phospholipase C activities,as a major virulence factor in the aggregate formation via activation of the platelet gpIIbIIIa. Here,we show that $\alpha$-toxin greatly and rapidly increases plasma membrane localization of CD11b,which binds to the platelet gpIIbIIIa via fibrinogen,in mouse neutrophils. Interestingly,short-term treatment of $\alpha$-toxin has little effect on gene expression profiles in neutrophils,and the toxin does not change the total protein expression levels of CD11b in whole cell lysates. The following analysis demonstrated that CD11b localizes to intracellular vesicles in intact cells,but the localization changed to the cytoplasmic membrane in $\alpha$-toxin-treated cells. These results suggest that CD11b is recruited to the cytoplasmic membrane by $\alpha$-toxin. Previously,we reported that $\alpha$-toxin promotes the formation of ceramide by its sphingomyelinase activity in mouse neutrophils. Interestingly,a synthetic cell-permeable ceramide analog,C2-ceramide,increases plasma membrane localization of CD11b,suggesting that ceramide production by $\alpha$-toxin recruits CD11b to the cytoplasmic membrane to promote platelet-leukocyte aggregation. Together,our results illustrate that the increase of cell membrane CD11b expression by $\alpha$-toxin might be crucial for the pathogenesis of C. perfringens to promote formation of platelet-leukocyte aggregates,leading to rapid tissue necrosis due to ischemia.
View Publication
文献
L. Fr\'egeau-Proulx et al. ( 2022)
MethodsX 9 101843
FACS-Free isolation and purification protocol of mouse prostate epithelial cells for organoid primary culture.
The prostate is a gland that contributes to men's fertility. It is highly responsive to androgens and is often the site of carcinogenesis,as prostate cancer is the most frequent cancer in men in over a hundred countries. To study the normal prostate,few in vitro models exist,and most of them do not express the androgen receptor (AR). To overcome this issue,prostate epithelial cells can be grown in primary culture ex vivo in 2- and 3-dimensional culture (organoids). However,methods to purify these cells often require flow cytometry,thus necessitating specialized instruments and expertise. Herein,we present a detailed protocol for the harvest,purification,and primary culture of mouse prostate epithelial cells to grow prostate organoids ex vivo. This protocol does not require flow cytometry approaches,facilitating its implementation in most research laboratories,and organoids grown with this protocol are highly responsive to androgens. In summary,we present a new simple method that can be used to grow prostate organoids that recapitulate the androgen response of this gland in vivo.
View Publication