Hjelm BE et al. (SEP 2013)
Human Molecular Genetics 22 17 3534--3546
In vitro-differentiated neural cell cultures progress towards donor-identical brain tissue
Multiple research groups have observed neuropathological phenotypes and molecular symptoms in vitro using induced pluripotent stem cell (iPSC)-derived neural cell cultures (i.e. patient-specific neurons and glia). However,the global differences/similarities that may exist between in vitro neural cells and their tissue-derived counterparts remain largely unknown. In this study,we compared temporal series of iPSC-derived in vitro neural cell cultures to endogenous brain tissue from the same autopsy donor. Specifically,we utilized RNA sequencing (RNA-Seq) to evaluate the transcriptional progression of in vitro-differentiated neural cells (over a timecourse of 0,35,70,105 and 140 days),and compared this with donor-identical temporal lobe tissue. We observed in vitro progression towards the reference brain tissue,and the following three results support this conclusion: (i) there was a significant increasing monotonic correlation between the days of our timecourse and the number of actively transcribed protein-coding genes and long intergenic non-coding RNAs (lincRNAs) (P < 0.05),consistent with the transcriptional complexity of the brain; (ii) there was an increase in CpG methylation after neural differentiation that resembled the epigenomic signature of the endogenous tissue; and (iii) there was a significant decreasing monotonic correlation between the days of our timecourse and the percent of in vitro to brain-tissue differences (P < 0.05) for tissue-specific protein-coding genes and all putative lincRNAs. Taken together,these results are consistent with in vitro neural development and physiological progression occurring predominantly by transcriptional activation of downregulated genes rather than deactivation of upregulated genes.
View Publication
文献
Hazell AS et al. (MAR 2014)
Metabolic Brain Disease 29 1 145--152
Pyrithiamine-induced thiamine deficiency alters proliferation and neurogenesis in both neurogenic and vulnerable areas of the rat brain
Thiamine deficiency (TD) leads to Wernicke's encephalopathy (WE),in which focal histological lesions occur in periventricular areas of the brain. Recently,impaired neurogenesis has been reported in the hippocampus during the dietary form of TD,and in pyrithiamine-induced TD (PTD),a well-characterized model of WE. To further characterize the consequences of PTD on neural stem/progenitor cell (NSPC) activity,we have examined the effect of this treatment in the rat on both the subventricular zone (SVZ) of the rostral lateral ventricle and subgranular layer (SGL) of the hippocampus,and in the thalamus and inferior colliculus,two vulnerable brain regions in this disorder. In both the SVZ and SGL,PTD led to a decrease in the numbers of bromodeoxyuridine-stained cells,indicating that proliferation of NSPCs destined for neurogenesis in these areas was reduced. Doublecortin (DCX) immunostaining in the SGL was decreased,indicating a reduction in neuroblast formation,consistent with impaired NSPC activity. DCX labeling was not apparent in focal areas of vulnerability. In the thalamus,proliferation of cells was absent while in the inferior colliculus,numerous actively dividing cells were apparent,indicative of a differential response between these two brain regions. Exposure of cultured neurospheres to PTD resulted in decreased proliferation of NSPCs,consistent with our in vivo findings. Together,these results indicate that PTD considerably affects cell proliferation and neurogenesis activity in both neurogenic areas and parts of the brain known to display structural and functional vulnerability,confirming and extending recent findings on the effects of TD on neurogenesis. Future use of NSPCs in vitro may allow a closer and more detailed examination of the mechanism(s) underlying inhibition of these cells during TD.
View Publication
文献
Halvorson KG et al. ( 2015)
PloS one 10 3 e0118926
A high-throughput in vitro drug screen in a genetically engineered mouse model of diffuse intrinsic pontine glioma identifies BMS-754807 as a promising therapeutic agent.
Diffuse intrinsic pontine gliomas (DIPGs) represent a particularly lethal type of pediatric brain cancer with no effective therapeutic options. Our laboratory has previously reported the development of genetically engineered DIPG mouse models using the RCAS/tv-a system,including a model driven by PDGF-B,H3.3K27M,and p53 loss. These models can serve as a platform in which to test novel therapeutics prior to the initiation of human clinical trials. In this study,an in vitro high-throughput drug screen as part of the DIPG preclinical consortium using cell-lines derived from our DIPG models identified BMS-754807 as a drug of interest in DIPG. BMS-754807 is a potent and reversible small molecule multi-kinase inhibitor with many targets including IGF-1R,IR,MET,TRKA,TRKB,AURKA,AURKB. In vitro evaluation showed significant cytotoxic effects with an IC50 of 0.13 μM,significant inhibition of proliferation at a concentration of 1.5 μM,as well as inhibition of AKT activation. Interestingly,IGF-1R signaling was absent in serum-free cultures from the PDGF-B; H3.3K27M; p53 deficient model suggesting that the antitumor activity of BMS-754807 in this model is independent of IGF-1R. In vivo,systemic administration of BMS-754807 to DIPG-bearing mice did not prolong survival. Pharmacokinetic analysis demonstrated that tumor tissue drug concentrations of BMS-754807 were well below the identified IC50,suggesting that inadequate drug delivery may limit in vivo efficacy. In summary,an unbiased in vitro drug screen identified BMS-754807 as a potential therapeutic agent in DIPG,but BMS-754807 treatment in vivo by systemic delivery did not significantly prolong survival of DIPG-bearing mice.
View Publication
文献
Halim L et al. (JUL 2017)
Cell reports 20 3 757--770
An Atlas of Human Regulatory T Helper-like Cells Reveals Features of Th2-like Tregs that Support a Tumorigenic Environment.
Regulatory T cells (Tregs) play a pivotal role in maintaining immunological tolerance,but they can also play a detrimental role by preventing antitumor responses. Here,we characterized T helper (Th)-like Treg subsets to further delineate their biological function and tissue distribution,focusing on their possible contribution to disease states. RNA sequencing and functional assays revealed that Th2-like Tregs displayed higher viability and autocrine interleukin-2 (IL-2)-mediated activation than other subsets. Th2-like Tregs were preferentially found in tissues rather than circulation and exhibited the highest migratory capacity toward chemokines enriched at tumor sites. These cellular responses led us to hypothesize that this subset could play a role in maintaining a tumorigenic environment. Concurrently,Th2-like Tregs were enriched specifically in malignant tissues from patients with melanoma and colorectal cancer compared to healthy tissue. Overall,our results suggest that Th2-like Tregs may contribute to a tumorigenic environment due to their increased cell survival,higher migratory capacity,and selective T-effector suppressive ability.
View Publication
文献
Gupta S et al. (DEC 2017)
Journal of Neurochemistry
Fibroblast growth factor 2 regulates activity and gene expression of human post-mitotic excitatory neurons
Many neuropsychiatric disorders are thought to result from subtle changes in neural circuit formation. We used human embryonic stem cells and induced pluripotent stem cells (hiPSCs) to model mature,post-mitotic excitatory neurons and examine effects of fibroblast growth factor 2 (FGF2). FGF2 gene expression is known to be altered in brain regions of major depressive disorder (MDD) patients and FGF2 has anti-depressive effects in animal models of depression. We generated stable inducible neurons (siNeurons) conditionally expressing human neurogenin-2 (NEUROG2) to generate a homogenous population of post-mitotic excitatory neurons and study the functional as well as the transcriptional effects of FGF2. Upon induction of NEUROG2 with doxycycline,the vast majority of cells are post-mitotic,and the gene expression profile recapitulates that of excitatory neurons within 6 days. Using hES cell lines that inducibly express NEUROG2 as well as GCaMP6f,we were able to characterize spontaneous calcium activity in these neurons and show that calcium transients increase in the presence of FGF2. The FGF2-responsive genes were determined by RNA-Seq. FGF2-regulated genes previously identified in non-neuronal cell types were up-regulated (EGR1,ETV4,SPRY4,and DUSP6) as a result of chronic FGF2 treatment of siNeurons. Novel neuron-specific genes were also identified that may mediate FGF2-dependent increases in synaptic efficacy including NRXN3,SYT2,and GALR1. Since several of these genes have been implicated in MDD previously,these results will provide the basis for more mechanistic studies of the role of FGF2 in MDD.
View Publication
文献
Guillou L et al. (NOV 2016)
Biophysical journal 111 9 2039--2050
Measuring Cell Viscoelastic Properties Using a Microfluidic Extensional Flow Device.
The quantification of cellular mechanical properties is of tremendous interest in biology and medicine. Recent microfluidic technologies that infer cellular mechanical properties based on analysis of cellular deformations during microchannel traversal have dramatically improved throughput over traditional single-cell rheological tools,yet the extraction of material parameters from these measurements remains quite complex due to challenges such as confinement by channel walls and the domination of complex inertial forces. Here,we describe a simple microfluidic platform that uses hydrodynamic forces at low Reynolds number and low confinement to elongate single cells near the stagnation point of a planar extensional flow. In tandem,we present,to our knowledge,a novel analytical framework that enables determination of cellular viscoelastic properties (stiffness and fluidity) from these measurements. We validated our system and analysis by measuring the stiffness of cross-linked dextran microparticles,which yielded reasonable agreement with previously reported values and our micropipette aspiration measurements. We then measured viscoelastic properties of 3T3 fibroblasts and glioblastoma tumor initiating cells. Our system captures the expected changes in elastic modulus induced in 3T3 fibroblasts and tumor initiating cells in response to agents that soften (cytochalasin D) or stiffen (paraformaldehyde) the cytoskeleton. The simplicity of the device coupled with our analytical model allows straightforward measurement of the viscoelastic properties of cells and soft,spherical objects.
View Publication
文献
Guadagno J et al. (MAR 2013)
Cell Death & Disease 4 3 e538--e538
Microglia-derived TNFα induces apoptosis in neural precursor cells via transcriptional activation of the Bcl-2 family member Puma
Neuroinflammation is a common feature of acute neurological conditions such as stroke and spinal cord injury,as well as neurodegenerative conditions such as Parkinson's disease,Alzheimer's disease,and amyotrophic lateral sclerosis. Previous studies have demonstrated that acute neuroinflammation can adversely affect the survival of neural precursor cells (NPCs) and thereby limit the capacity for regeneration and repair. However,the mechanisms by which neuroinflammatory processes induce NPC death remain unclear. Microglia are key mediators of neuroinflammation and when activated to induce a pro-inflammatory state produce a number of factors that could affect NPC survival. Importantly,in the present study we demonstrate that tumor necrosis factor α (TNFα) produced by lipopolysaccharide-activated microglia is necessary and sufficient to trigger apoptosis in mouse NPCs in vitro. Furthermore,we demonstrate that microglia-derived TNFα induces NPC apoptosis via a mitochondrial pathway regulated by the Bcl-2 family protein Bax. BH3-only proteins are known to play a key role in regulating Bax activation and we demonstrate that microglia-derived TNFα induces the expression of the BH3-only family member Puma in NPCs via an NF-κB-dependent mechanism. Specifically,we show that NF-κB is activated in NPCs treated with conditioned media from activated microglia and that Puma induction and NPC apoptosis is blocked by the NF-κB inhibitor BAY-117082. Importantly,we have determined that NPC apoptosis induced by activated microglia-derived TNFα is attenuated in Puma-deficient NPCs,indicating that Puma induction is required for NPC death. Consistent with this,we demonstrate that Puma-deficient NPCs exhibit an 13-fold increase in survival as compared with wild-type NPCs following transplantation into the inflammatory environment of the injured spinal cord in vivo. In summary,we have identified a key signaling pathway that regulates neuroinflammation induced apoptosis in NPCs in vitro and in vivo that could be targeted to promote regeneration and repair in diverse neurological conditions.
View Publication
文献
Gu Q et al. (JUN 2014)
Toxicology in Vitro 28 4 469--472
In vitro detection of cytotoxicity using FluoroJade-C
We describe here a novel method for the determination of cytotoxicity in cell cultures using Fluoro-Jade C (FJ-C). FJ-C has been previously used for the assessment of neurodegeneration in fixed brain tissue samples,and has never been utilized in live cell cultures or in different types of cells other than neurons. In the present study we examined the utility of FJ-C for the determination of cytotoxicity in vitro. Various cell cultures were evaluated including neural stem cells,brain microvessel endothelial cells,and SH-SY5Y,PC12 and MDCK cells. Cytotoxicities induced by toxicants in cell cultures,as determined by the FJ-C labeling,were further confirmed by commonly used cytotoxicity assays. This in vitro approach is simple,fast,and sensitive and,thus,has the potential to augment if not replace currently used cell-based cytotoxicity assays.
View Publication
文献
Goldstein BJ et al. (DEC 2016)
Development 143 23 4394--4404
Contribution of Polycomb group proteins to olfactory basal stem cell self-renewal in a novel c-KIT+ culture model and in vivo.
Olfactory epithelium (OE) has a lifelong capacity for neurogenesis due to the presence of basal stem cells. Despite the ability to generate short-term cultures,the successful in vitro expansion of purified stem cells from adult OE has not been reported. We sought to establish expansion-competent OE stem cell cultures to facilitate further study of the mechanisms and cell populations important in OE renewal. Successful cultures were prepared using adult mouse basal cells selected for expression of c-KIT. We show that c-KIT signaling regulates self-renewal capacity and prevents neurodifferentiation in culture. Inhibition of TGFβ family signaling,a known negative regulator of embryonic basal cells,is also necessary for maintenance of the proliferative,undifferentiated state in vitro Characterizing successful cultures,we identified expression of BMI1 and other Polycomb proteins not previously identified in olfactory basal cells but known to be essential for self-renewal in other stem cell populations. Inducible fate mapping demonstrates that BMI1 is expressed in vivo by multipotent OE progenitors,validating our culture model. These findings provide mechanistic insights into the renewal and potency of olfactory stem cells.
View Publication
文献
Gilpin SE et al. ( 2016)
Biomaterials 108 111--119
Regenerative potential of human airway stem cells in lung epithelial engineering
Bio-engineered organs for transplantation may ultimately provide a personalized solution for end-stage organ failure,without the risk of rejection. Building upon the process of whole organ perfusion decellularization,we aimed to develop novel,translational methods for the recellularization and regeneration of transplantable lung constructs. We first isolated a proliferative KRT5+TP63+ basal epithelial stem cell population from human lung tissue and demonstrated expansion capacity in conventional 2D culture. We then repopulated acellular rat scaffolds in ex vivo whole organ culture and observed continued cell proliferation,in combination with primary pulmonary endothelial cells. To show clinical scalability,and to test the regenerative capacity of the basal cell population in a human context,we then recellularized and cultured isolated human lung scaffolds under biomimetic conditions. Analysis of the regenerated tissue constructs confirmed cell viability and sustained metabolic activity over 7 days of culture. Tissue analysis revealed extensive recellularization with organized tissue architecture and morphology,and preserved basal epithelial cell phenotype. The recellularized lung constructs displayed dynamic compliance and rudimentary gas exchange capacity. Our results underline the regenerative potential of patient-derived human airway stem cells in lung tissue engineering. We anticipate these advances to have clinically relevant implications for whole lung bioengineering and ex vivo organ repair.
View Publication
文献
Ghosh D et al. ( 2016)
Stem cells (Dayton,Ohio) 34 9 2276--89
TGFβ-Responsive HMOX1 Expression Is Associated with Stemness and Invasion in Glioblastoma Multiforme.
Glioblastoma multiforme (GBM) is the most common and lethal adult brain tumor. Resistance to standard radiation and chemotherapy is thought to involve survival of GBM cancer stem cells (CSCs). To date,no single marker for identifying GBM CSCs has been able to capture the diversity of CSC populations,justifying the needs for additional CSC markers for better characterization. Employing targeted mass spectrometry,here we present five cell-surface markers HMOX1,SLC16A1,CADM1,SCAMP3,and CLCC1 which were found to be elevated in CSCs relative to healthy neural stem cells (NSCs). Transcriptomic analyses of REMBRANDT and TCGA compendiums also indicated elevated expression of these markers in GBM relative to controls and non-GBM diseases. Two markers SLC16A1 and HMOX1 were found to be expressed among pseudopalisading cells that reside in the hypoxic region of GBM,substantiating the histopathological hallmarks of GBM. In a prospective study (N%=%8) we confirmed the surface expression of HMOX1 on freshly isolated primary GBM cells (P0). Employing functional assays that are known to evaluate stemness,we demonstrate that elevated HMOX1 expression is associated with stemness in GBM and can be modulated through TGFβ. siRNA-mediated silencing of HMOX1 impaired GBM invasion-a phenomenon related to poor prognosis. In addition,surgical resection of GBM tumors caused declines (18%%±%5.1SEM) in the level of plasma HMOX1 as measured by ELISA,in 8/10 GBM patients. These findings indicate that HMOX1 is a robust predictor of GBM CSC stemness and pathogenesis. Further understanding of the role of HMOX1 in GBM may uncover novel therapeutic approaches. Stem Cells 2016;34:2276-2289.
View Publication
文献
Ghezzi S et al. (APR 2017)
Antiviral research 140 13--17
Heparin prevents Zika virus induced-cytopathic effects in human neural progenitor cells.
The recent Zika virus (ZIKV) outbreak,which mainly affected Brazil and neighbouring states,demonstrated the paucity of information concerning the epidemiology of several flaviruses,but also highlighted the lack of available agents with which to treat such emerging diseases. Here,we show that heparin,a widely used anticoagulant,while exerting a modest inhibitory effect on Zika Virus replication,fully prevents virus-induced cell death of human neural progenitor cells (NPCs).
View Publication