Q. Hou et al. (2 2023)
Pharmacological research 188 106676
Dietary genistein increases microbiota-derived short chain fatty acid levels, modulates homeostasis of the aging gut, and extends healthspan and lifespan.
Age-related gastrointestinal decline contributes to whole-organism frailty and mortality. Genistein is known to have beneficial effects on age-related diseases,but its precise role in homeostasis of the aging gut remains to be elucidated. Here,wild-type aging mice and Zmpste24-/- progeroid mice were used to investigate the role of genistein in lifespan and homeostasis of the aging gut in mammals. A series of longitudinal,clinically relevant measurements were performed to evaluate the effect of genistein on healthspan. It was found that dietary genistein promoted a healthier and longer life and was associated with a decrease in the levels of systemic inflammatory cytokines in aging mice. Furthermore,dietary genistein ameliorated gut dysfunctions,such as intestinal inflammation,leaky gut,and impaired epithelial regeneration. A distinct genistein-mediated alteration in gut microbiota was observed by increasing Lachnospira abundance and short-chain fatty acid (SCFA) production. Further fecal microbiota transplantation and dirty cage sharing experiments indicated that the gut microbiota from genistein-fed mice rejuvenated the aging gut and extended the lifespan of progeroid mice. It was demonstrated that genistein-associated SCFAs alleviated tumor necrosis factor alpha-induced intestinal organoid damage. Moreover,genistein-associated propionate promoted regulatory T cell-derived interleukin 10 production,which alleviated macrophage-derived inflammation. This study provided the first data,to the authors' knowledge,indicating that dietary genistein modulates homeostasis in the aging gut and extends the healthspan and lifespan of aging mammals. Moreover,the existence of a link between genistein and the gut microbiota provides a rationale for dietary interventions against age-associated frailty.
View Publication
Reference
M. Hashimi et al. (12 2022)
Research square
Antiviral response mechanisms in a Jamaican Fruit Bat intestinal organoid model of SARS-CoV-2 infection.
Bats are natural reservoirs for several zoonotic viruses,potentially due to an enhanced capacity to control viral infection. However,the mechanisms of antiviral responses in bats are poorly defined. Here we established a Jamaican fruit bat (JFB) intestinal organoid model of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. JFB organoids were susceptible to SARS-CoV-2 infection,with increased viral RNA and subgenomic RNA detected in cell lysates and supernatants. Gene expression of type I interferons and inflammatory cytokines was induced in response to SARS-CoV-2 but not in response to TLR agonists. Interestingly,SARS-CoV-2 did not lead to cytopathic effects in JFB organoids but caused enhanced organoid growth. Proteomic analyses revealed an increase in inflammatory signaling,cell turnover,cell repair,and SARS-CoV-2 infection pathways. Collectively,our findings suggest that primary JFB intestinal epithelial cells can mount a successful antiviral interferon response and that SARS-CoV-2 infection in JFB cells induces protective regenerative pathways.
View Publication
Reference
U. V. Chembazhi et al. (3 2023)
Nucleic acids research 51 2397-2414
PTBP1 controls intestinal epithelial regeneration through post-transcriptional regulation of gene expression.
The intestinal epithelial regeneration is driven by intestinal stem cells under homeostatic conditions. Differentiated intestinal epithelial cells,such as Paneth cells,are capable of acquiring multipotency and contributing to regeneration upon the loss of intestinal stem cells. Paneth cells also support intestinal stem cell survival and regeneration. We report here that depletion of an RNA-binding protein named polypyrimidine tract binding protein 1 (PTBP1) in mouse intestinal epithelial cells causes intestinal stem cell death and epithelial regeneration failure. Mechanistically,we show that PTBP1 inhibits neuronal-like splicing programs in intestinal crypt cells,which is critical for maintaining intestinal stem cell stemness. This function is achieved at least in part through promoting the non-productive splicing of its paralog PTBP2. Moreover,PTBP1 inhibits the expression of an AKT inhibitor PHLDA3 in Paneth cells and permits AKT activation,which presumably maintains Paneth cell plasticity and function in supporting intestinal stem cell niche. We show that PTBP1 directly binds to a CU-rich region in the 3' UTR of Phlda3,which we demonstrate to be critical for downregulating the mRNA and protein levels of Phlda3. Our results thus reveal the multifaceted in vivo regulation of intestinal epithelial regeneration by PTBP1 at the post-transcriptional level.
View Publication
Reference
D. K. H. Chan et al. (1 2023)
STAR protocols 4 101978
Generation and immunofluorescent validation of gene knockouts in adult human colonic organoids using multi-guide RNA CRISPR-Cas9.
While readily achieved in cell lines,the application of CRISPR-Cas9 gene editing in human-derived organoids suffers from limited efficacy and complex protocols. Here,we describe a multi-guide RNA CRISPR-Cas9 gene-editing protocol which efficiently achieves complete gene knockout in adult human colonic organoids. This protocol also describes crucial steps including how to harvest patient tissue to maximize gene-editing efficacy and a technique to validate gene knockout following editing with immunofluorescent staining of the organoids against the target protein.
View Publication
Reference
A. Calvert and A. Brault ( 2015)
American Journal of Tropical Medicine and Hygiene 93 1338-40
Development and characterization of monoclonal antibodies directed against the nucleoprotein of heartland virus
Heartland virus (HRTV),a phlebovirus first isolated from two Missouri farmers in 2009,has been proposed to be transmitted to humans by the bite of infected Amblyomma americanum ticks. It is closely related to severe fever with thrombocytopenia syndrome virus (SFTSV) from China,another previously unrecognized phlebovirus that has subsequently been associated with hundreds of cases of severe disease in humans. To expand diagnostic capacity to detect HRTV infections,20 hybridoma clones secreting anti-HRTV murine monoclonal antibodies (MAbs) were developed using splenocytes from HRTV-inoculated AG129 alpha/beta and gamma interferon receptor-deficient mice. Nine of these MAbs were characterized herein for inclusion in future HRTV diagnostic assay development. All of the MAbs developed were found to be non-neutralizing and reactive to linear epitopes on HRTV nucleocapsid protein. MAb 2AF11 was found to be cross-reactive with SFTSV.
View Publication
Reference
F. Cadamuro et al. (2 2023)
Carbohydrate polymers 302 120395
3D bioprinted colorectal cancer models based on hyaluronic acid and signalling glycans.
In cancer microenvironment,aberrant glycosylation events of ECM proteins and cell surface receptors occur. We developed a protocol to generate 3D bioprinted models of colorectal cancer (CRC) crosslinking hyaluronic acid and gelatin functionalized with three signalling glycans characterized in CRC,3'-Sialylgalactose,6'-Sialylgalactose and 2'-Fucosylgalactose. The crosslinking,performed exploiting azide functionalized gelatin and hyaluronic acid and 4arm-PEG-dibenzocyclooctyne,resulted in biocompatible hydrogels that were 3D bioprinted with commercial CRC cells HT-29 and patient derived CRC tumoroids. The glycosylated hydrogels showed good 3D printability,biocompatibility and stability over the time. SEM and synchrotron radiation SAXS/WAXS analysis revealed the influence of glycosylation in the construct morphology,whereas MALDI-MS imaging showed that protein profiles of tumoroid cells vary with glycosylation,indicating that sialylation and fucosylation of ECM proteins induce diverse alterations to the proteome of the tumoroid and surrounding cells.
View Publication
Reference
C. Bouffi et al. (6 2023)
Nature biotechnology 41 824-831
In vivo development of immune tissue in human intestinal organoids transplanted into humanized mice.
Human intestinal organoids (HIOs) derived from pluripotent stem cells provide a valuable model for investigating human intestinal organogenesis and physiology,but they lack the immune components required to fully recapitulate the complexity of human intestinal biology and diseases. To address this issue and to begin to decipher human intestinal-immune crosstalk during development,we generated HIOs containing immune cells by transplanting HIOs under the kidney capsule of mice with a humanized immune system. We found that human immune cells temporally migrate to the mucosa and form cellular aggregates that resemble human intestinal lymphoid follicles. Moreover,after microbial exposure,epithelial microfold cells are increased in number,leading to immune cell activation determined by the secretion of IgA antibodies in the HIO lumen. This in vivo HIO system with human immune cells provides a framework for future studies on infection- or allergen-driven intestinal diseases.
View Publication
Reference
S. Balu et al. ( 2011)
The Journal of Immunology 186 3113-3119
A novel human IgA monoclonal antibody protects against tuberculosis
Abs have been shown to be protective in passive immunotherapy of tuberculous infection using mouse experimental models. In this study,we report on the properties of a novel human IgA1,constructed using a single-chain variable fragment clone (2E9),selected from an Ab phage library. The purified Ab monomer revealed high binding affinities for the mycobacterial ?-crystallin Ag and for the human Fc?RI (CD89) IgA receptor. Intranasal inoculations with 2E9IgA1 and recombinant mouse IFN-? significantly inhibited pulmonary H37Rv infection in mice transgenic for human CD89 but not in CD89-negative littermate controls,suggesting that binding to CD89 was necessary for the IgA-imparted passive protection. 2E9IgA1 added to human whole-blood or monocyte cultures inhibited luciferase-tagged H37Rv infection although not for all tested blood donors. Inhibition by 2E9IgA1 was synergistic with human rIFN-? in cultures of purified human monocytes but not in whole-blood cultures. The demonstration of the mandatory role of Fc?RI (CD89) for human IgA-mediated protection is important for understanding of the mechanisms involved and also for translation of this approach toward development of passive immunotherapy of tuberculosis.
View Publication
Reference
I. Baccelli et al. ( 2017)
Blood cancer journal 7 e529
A novel approach for the identification of efficient combination therapies in primary human acute myeloid leukemia specimens.
Appropriate culture methods for the interrogation of primary leukemic samples were hitherto lacking and current assays for compound screening are not adapted for large-scale investigation of synergistic combinations. In this study,we report a novel approach that efficiently distills synthetic lethal interactions between small molecules active on primary human acute myeloid leukemia (AML) specimens. In single-dose experiments and under culture conditions preserving leukemia stem cell activity,our strategy considerably reduces the number of tests needed for the identification of promising compound combinations. Initially conducted with a selected library of 5000 small molecules and 20 primary AML specimens,it reveals 5 broad classes of sensitized therapeutic target pathways along with their synergistic patient-specific fingerprints. This novel method opens new avenues for the development of AML personalized therapeutics and may be generalized to other tumor types,for which in vitro cancer stem cell cultures have been developed.
View Publication