Sotthibundhu A et al. (DEC 2009)
Neurobiology of aging 30 12 1975--85
Abeta(1-42) stimulates adult SVZ neurogenesis through the p75 neurotrophin receptor.
The generation of amyloid-beta peptide (Abeta) and its accumulation in amyloid plaques are generally recognized as key characteristics of Alzheimer's disease. A number of reports have indicated that Abeta can regulate the proliferation of neural precursor cells and adult neurogenesis,suggesting that this may underpin the cognitive decline and compromised olfaction also associated with the condition. Here we report that Abeta(1-42) treatment both in vitro and in vivo,as well as endogenous generation of Abeta in C100 and APP/PS1 transgenic models of Alzheimer's disease,stimulate neurogenesis of young adult subventricular zone precursors. The neurogenic effect of Abeta(1-42) was found to require expression of the p75 neurotrophin receptor (p75(NTR)) by the precursor cells,and activation of p75(NTR) by metalloprotease cleavage. However,precursors from 12-month-old APP/PS1 mice failed to respond to Abeta(1-42). Our results suggest that overstimulation of p75(NTR)-positive progenitors during early life might result in depletion of the stem cell pool and thus a more rapid decline in basal neurogenesis. This,in turn,could lead to impaired neurogenic function in later life.
View Publication
Androgenetic embryonic stem cells form neural progenitor cells in vivo and in vitro.
Uniparental zygotes with two paternal (androgenetic [AG]) or two maternal (gynogenetic [GG]; parthenogenetic [PG]) genomes are not able to develop into viable offspring but can form blastocysts from which embryonic stem cells (ESCs) can be derived. Although some aspects of the in vitro and in vivo differentiation potential of PG and GG ESCs of several species have been studied,the developmental capacity of AG ESCs is much less clear. Here,we investigate the potential of murine AG ESCs to undergo neural differentiation. We observed that AG ESCs differentiate in vitro into pan-neural progenitor cells (pnPCs) that further give rise to cells that express neuronal- and astroglial-specific markers. Neural progeny of in vitro-differentiated AG ESCs exhibited fidelity of expression of six imprinted genes analyzed,with the exception of Ube3a. Bisulfite sequencing for two imprinting control regions suggested that pnPCs predominantly maintained their methylation pattern. Following blastocyst injection of AG and biparental (normal fertilized [N]) ESCs,we found widespread and evenly distributed contribution of ESC-derived cells in both AG and N chimeric early fetal brains. AG and N ESC-derived cells isolated from chimeric fetal brains by fluorescence-activated cell sorting exhibited similar neurosphere-initiating cell frequencies and neural multilineage differentiation potential. Our results indicate that AG ESC-derived neural progenitor/stem cells do not differ from N neural progenitor/stem cells in their self-renewal and neural multilineage differentiation potential. Disclosure of potential conflicts of interest is found at the end of this article.
View Publication
文献
Ishii Y et al. (MAR 2008)
Molecular and cellular neurosciences 37 3 507--18
Characterization of neuroprogenitor cells expressing the PDGF beta-receptor within the subventricular zone of postnatal mice.
We report a considerable number of cells in the ventricular and the subventricular zones (SVZ) of newborn mice to stain positive for the PDGF beta-receptor (PDGFRB). Many of them also stained for nestin and/or GFAP but less frequently for the neuroblast marker doublecortin and for the mitotic marker Ki-67. The SVZ of mice with nestin-Cre conditional deletion of PDGFRB expressed the receptor only on blood vessels and was devoid of any morphological abnormality. PDGFRB(-/-) neurospheres showed a higher rate of apoptosis without any significant decrease in proliferation. They demonstrated reduced capacities of migration and neuronal differentiation in response to not only PDGF-BB but also bFGF. Furthermore,the PDGFR kinase inhibitor STI571 blocked the effects of bFGF in control neurosphere cultures. bFGF increased the activity of the PDGFRB promoter as well as the expression and phosphorylation of PDGFRB. These results suggest the presence of the signaling convergence between PDGF and FGF. PDGFRB is needed for survival,and the effects of bFGF in migration and neural differentiation of the cells may be potentiated by induction of PDGFRB.
View Publication
文献
Sii-Felice K et al. (MAR 2008)
The EMBO journal 27 5 770--81
Fanconi DNA repair pathway is required for survival and long-term maintenance of neural progenitors.
Although brain development abnormalities and brain cancer predisposition have been reported in some Fanconi patients,the possible role of Fanconi DNA repair pathway during neurogenesis is unclear. We thus addressed the role of fanca and fancg,which are involved in the activation of Fanconi pathway,in neural stem and progenitor cells during brain development and adult neurogenesis. Fanca(-/-) and fancg(-/-) mice presented with microcephalies and a decreased neuronal production in developing cortex and adult brain. Apoptosis of embryonic neural progenitors,but not that of postmitotic neurons,was increased in the neocortex of fanca(-/-) and fancg(-/-) mice and was correlated with chromosomal instability. In adult Fanconi mice,we showed a reduced proliferation of neural progenitor cells related to apoptosis and accentuated neural stem cells exhaustion with ageing. In addition,embryonic and adult Fanconi neural stem cells showed a reduced capacity to self-renew in vitro. Our study demonstrates a critical role for Fanconi pathway in neural stem and progenitor cells during developmental and adult neurogenesis.
View Publication
文献
Louis SA et al. (APR 2008)
Stem cells (Dayton,Ohio) 26 4 988--96
Enumeration of neural stem and progenitor cells in the neural colony-forming cell assay.
Advancement in our understanding of the biology of adult stem cells and their therapeutic potential relies heavily on meaningful functional assays that can identify and measure stem cell activity in vivo and in vitro. In the mammalian nervous system,neural stem cells (NSCs) are often studied using a culture system referred to as the neurosphere assay. We previously challenged a central tenet of this assay,that all neurospheres are derived from a NSC,and provided evidence that it overestimates NSC frequency,rendering it inappropriate for quantitation of NSC frequency in relation to NSC regulation. Here we report the development and validation of the neural colony-forming cell assay (NCFCA),which discriminates stem from progenitor cells on the basis of their proliferative potential. We anticipate that the NCFCA will provide additional clarity in discerning the regulation of NSCs,thereby facilitating further advances in the promising application of NSCs for therapeutic use.
View Publication
Comparative analysis of the frequency and distribution of stem and progenitor cells in the adult mouse brain.
The neurosphere assay can detect and expand neural stem cells (NSCs) and progenitor cells,but it cannot discriminate between these two populations. Given two assays have purported to overcome this shortfall,we performed a comparative analysis of the distribution and frequency of NSCs and progenitor cells detected in 400 mum coronal segments along the ventricular neuraxis of the adult mouse brain using the neurosphere assay,the neural colony forming cell assay (N-CFCA),and label-retaining cell (LRC) approach. We observed a large variation in the number of progenitor/stem cells detected in serial sections along the neuraxis,with the number of neurosphere-forming cells detected in individual 400 mum sections varying from a minimum of eight to a maximum of 891 depending upon the rostral-caudal coordinate assayed. Moreover,the greatest variability occurred in the rostral portion of the lateral ventricles,thereby explaining the large variation in neurosphere frequency previously reported. Whereas the overall number of neurospheres (3730 +/- 276) or colonies (4275 +/- 124) we detected along the neuraxis did not differ significantly,LRC numbers were significantly reduced (1186 +/- 188,7 month chase) in comparison to both total colonies and neurospheres. Moreover,approximately two orders of magnitude fewer NSC-derived colonies (50 +/- 10) were detected using the N-CFCA as compared to LRCs. Given only 5% of the LRCs are cycling (BrdU+/Ki-67+) or competent to divide (BrdU+/Mcm-2+),and proliferate upon transfer to culture,it is unclear whether this technique selectively detects endogenous NSCs. Overall,caution should be taken with the interpretation and employment of all these techniques.
View Publication
文献
Flanagan LA et al. (MAR 2008)
Stem cells (Dayton,Ohio) 26 3 656--65
Unique dielectric properties distinguish stem cells and their differentiated progeny.
The relatively new field of stem cell biology is hampered by a lack of sufficient means to accurately determine the phenotype of cells. Cell-type-specific markers,such as cell surface proteins used for flow cytometry or fluorescence-activated cell sorting,are limited and often recognize multiple members of a stem cell lineage. We sought to develop a complementary approach that would be less dependent on the identification of particular markers for the subpopulations of cells and would instead measure their overall character. We tested whether a microfluidic system using dielectrophoresis (DEP),which induces a frequency-dependent dipole in cells,would be useful for characterizing stem cells and their differentiated progeny. We found that populations of mouse neural stem/precursor cells (NSPCs),differentiated neurons,and differentiated astrocytes had different dielectric properties revealed by DEP. By isolating NSPCs from developmental ages at which they are more likely to generate neurons,or astrocytes,we were able to show that a shift in dielectric property reflecting their fate bias precedes detectable marker expression in these cells and identifies specific progenitor populations. In addition,experimental data and mathematical modeling suggest that DEP curve parameters can indicate cell heterogeneity in mixed cultures. These findings provide evidence for a whole cell property that reflects stem cell fate bias and establish DEP as a tool with unique capabilities for interrogating,characterizing,and sorting stem cells.
View Publication
文献
Yasuda T et al. (FEB 2008)
Molecular and cellular neurosciences 37 2 284--97
K(ir) and K(v) channels regulate electrical properties and proliferation of adult neural precursor cells.
The functional significance of the electrophysiological properties of neural precursor cells (NPCs) was investigated using dissociated neurosphere-derived NPCs from the forebrain subventricular zone (SVZ) of adult mice. NPCs exhibited hyperpolarized resting membrane potentials,which were depolarized by the K(+) channel inhibitor,Ba(2+). Pharmacological analysis revealed two distinct K(+) channel families: Ba(2+)-sensitive K(ir) channels and tetraethylammonium (TEA)-sensitive K(v) (primarily K(DR)) channels. Ba(2+) promoted mitogen-stimulated NPC proliferation,which was mimicked by high extracellular K(+),whereas TEA inhibited proliferation. Based on gene and protein levels in vitro,we identified K(ir)4.1,K(ir)5.1 and K(v)3.1 channels as the functional K(+) channel candidates. Expression of these K(+) channels was immunohistochemically found in NPCs of the adult mouse SVZ,but was negligible in neuroblasts. It therefore appears that expression of K(ir) and K(v) (K(DR)) channels in NPCs and related changes in the resting membrane potential could contribute to NPC proliferation and neuronal lineage commitment in the neurogenic microenvironment.
View Publication
文献
Platet N et al. (DEC 2007)
Cancer letters 258 2 286--90
Influence of oxygen tension on CD133 phenotype in human glioma cell cultures.
Under standard culture conditions,tumor cells are exposed to 20% O(2),whereas the mean tumor oxygen levels within the tumor are much lower. We demonstrate,using low-passaged human tumor cell cultures established from glioma,that a reduction in the oxygen level in these cell cultures dramatically increases the percentage of CD133 expressing cells.
View Publication
文献
Grenier G et al. (DEC 2007)
Stem cells (Dayton,Ohio) 25 12 3101--10
Resident endothelial precursors in muscle, adipose, and dermis contribute to postnatal vasculogenesis.
A novel population of tissue-resident endothelial precursors (TEPs) was isolated from small blood vessels in dermal,adipose,and skeletal muscle of mouse based on their ability to be grown as spheres. Cellular and molecular analyses of these cells revealed that they were highly related regardless of the tissue of origin and distinct from embryonic neural stem cells. Notably,TEPs did not express hematopoietic markers,but they expressed numerous characteristics of angiogenic precursors and their differentiated progeny,such as CD34,Flk-1,Tie-1,CD31,and vascular endothelial cadherin (VE-cadherin). TEPs readily differentiated into endothelial cells in newly formed vascular networks following transplantation into regenerating skeletal muscle. Taken together,these experiments suggest that TEPs represent a novel class of endothelial precursors that are closely associated with small blood vessels in muscle,adipose,and dermal tissue. This finding is of particular interest since it could bring new insight in cancer angiogenesis and collateral blood vessels developed following ischemia. Disclosure of potential conflicts of interest is found at the end of this article.
View Publication
文献
Young KM et al. (AUG 2007)
The Journal of neuroscience : the official journal of the Society for Neuroscience 27 31 8286--96
Subventricular zone stem cells are heterogeneous with respect to their embryonic origins and neurogenic fates in the adult olfactory bulb.
We determined the embryonic origins of adult forebrain subventricular zone (SVZ) stem cells by Cre-lox fate mapping in transgenic mice. We found that all parts of the telencephalic neuroepithelium,including the medial ganglionic eminence and lateral ganglionic eminence (LGE) and the cerebral cortex,contribute multipotent,self-renewing stem cells to the adult SVZ. Descendants of the embryonic LGE and cortex settle in ventral and dorsal aspects of the dorsolateral SVZ,respectively. Both populations contribute new (5-bromo-2'-deoxyuridine-labeled) tyrosine hydroxylase- and calretinin-positive interneurons to the adult olfactory bulb. However,calbindin-positive interneurons in the olfactory glomeruli were generated exclusively by LGE-derived stem cells. Thus,different SVZ stem cells have different embryonic origins,colonize different parts of the SVZ,and generate different neuronal progeny,suggesting that some aspects of embryonic patterning are preserved in the adult SVZ. This could have important implications for the design of endogenous stem cell-based therapies in the future.
View Publication
文献
Walker TL et al. (APR 2007)
The Journal of neuroscience : the official journal of the Society for Neuroscience 27 14 3734--42
The doublecortin-expressing population in the developing and adult brain contains multipotential precursors in addition to neuronal-lineage cells.
Doublecortin (DCX) has recently been promulgated as a selective marker of cells committed to the neuronal lineage in both the developing and the adult brain. To explore the potential of DCX-positive (DCX+) cells more stringently,these cells were isolated by flow cytometry from the brains of transgenic mice expressing green fluorescent protein under the control of the DCX promoter in embryonic,early postnatal,and adult animals. It was found that virtually all of the cells (99.9%) expressing high levels of DCX (DCX(high)) in the embryonic brain coexpressed the neuronal marker betaIII-tubulin and that this population contained no stem-like cells as demonstrated by lack of neurosphere formation in vitro. However,the DCX+ population from the early postnatal brain and the adult subventricular zone and hippocampus,which expressed low levels of DCX (DCX(low)),was enriched for neurosphere-forming cells,with only a small subpopulation of these cells coexpressing the neuronal markers betaIII-tubulin or microtubule-associated protein 2. Similarly,the DCX(low) population from embryonic day 14 (E14) brain contained neurosphere-forming cells. Only the postnatal cerebellum and adult olfactory bulb contained some DCX(high) cells,which were shown to be similar to the E14 DCX(high) cells in that they had no stem cell activity. Electrophysiological studies confirmed the heterogeneous nature of DCX+ cells,with some cells displaying characteristics of immature or mature neurons,whereas others showed no neuronal characteristics whatsoever. These results indicate that DCX(high) cells,regardless of location,are restricted to the neuronal lineage or are bone fide neurons,whereas some DCX(low) cells retain their multipotentiality.
View Publication