Piccirillo SGM et al. (DEC 2006)
Nature 444 7120 761--5
Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells.
Transformed,oncogenic precursors,possessing both defining neural-stem-cell properties and the ability to initiate intracerebral tumours,have been identified in human brain cancers. Here we report that bone morphogenetic proteins (BMPs),amongst which BMP4 elicits the strongest effect,trigger a significant reduction in the stem-like,tumour-initiating precursors of human glioblastomas (GBMs). Transient in vitro exposure to BMP4 abolishes the capacity of transplanted GBM cells to establish intracerebral GBMs. Most importantly,in vivo delivery of BMP4 effectively blocks the tumour growth and associated mortality that occur in 100% of mice after intracerebral grafting of human GBM cells. We demonstrate that BMPs activate their cognate receptors (BMPRs) and trigger the Smad signalling cascade in cells isolated from human glioblastomas (GBMs). This is followed by a reduction in proliferation,and increased expression of markers of neural differentiation,with no effect on cell viability. The concomitant reduction in clonogenic ability,in the size of the CD133+ population and in the growth kinetics of GBM cells indicates that BMP4 reduces the tumour-initiating cell pool of GBMs. These findings show that the BMP-BMPR signalling system--which controls the activity of normal brain stem cells--may also act as a key inhibitory regulator of tumour-initiating,stem-like cells from GBMs and the results also identify BMP4 as a novel,non-cytotoxic therapeutic effector,which may be used to prevent growth and recurrence of GBMs in humans.
View Publication
文献
Mizutani E et al. (DEC 2006)
Reproduction (Cambridge,England) 132 6 849--57
Developmental ability of cloned embryos from neural stem cells.
The success rate is generally higher when cloning mice from embryonic stem (ES) cell nuclei than from somatic cell nuclei,suggesting that the embryonic nature or the undifferentiated state of the donor cell increases cloning efficiency. We assessed the developmental ability of cloned embryos derived from cultured neural stem cell (NSC) nuclei and compared the success rate with that of embryos cloned from other donor cells such as differentiated NSCs,cumulus cells,Sertoli cells and ES cells in the mouse. The transfer of two-cell cloned embryos derived from cultured NSC nuclei into surrogate mothers produced five live cloned mice. However,the success rate (0.5%) was higher in embryos cloned from cultured NSC nuclei than from differentiated NSCs (0%),but lower than that obtained by cloning mice from other cell nuclei (2.2-3.5%). Although the in vitro developmental potential to the two-cell stage of the cloned embryos derived from NSC nuclei (73%) was similar to that of the cloned embryos derived from other somatic cell nuclei (e.g.,85% in Sertoli cells and 75% in cumulus cells),the developmental rate to the morula-blastocyst stage was only 7%. This rate is remarkably lower than that produced from other somatic cells (e.g.,50% in Sertoli cells and 54% in cumulus cells). These results indicate that the undifferentiated state of neural cells does not enhance the cloning efficiency in mice and that the arrest point for in vitro development of cloned embryos depends on the donor cell type.
View Publication
文献
Li J-M et al. (FEB 2007)
Molecular endocrinology (Baltimore,Md.) 21 2 499--511
Angiotensin II-induced neural differentiation via angiotensin II type 2 (AT2) receptor-MMS2 cascade involving interaction between AT2 receptor-interacting protein and Src homology 2 domain-containing protein-tyrosine phosphatase 1.
Angiotensin II (Ang II) type 2 (AT2) receptors are abundantly expressed not only in the fetal brain where they probably contribute to brain development,but also in pathological conditions to protect the brain against stroke; however,the detailed mechanisms are unclear. Here,we demonstrated that AT2 receptor signaling induced neural differentiation via an increase in MMS2,one of the ubiquitin-conjugating enzyme variants. The AT2 receptor,MMS2,Src homology 2 domain-containing protein-tyrosine phosphatase 1 (SHP-1),and newly cloned AT2 receptor-interacting protein (ATIP) were highly expressed in fetal rat neurons and declined after birth. Ang II induced MMS2 expression in a dose-dependent manner,reaching a peak after 4 h of stimulation,and this effect was enhanced with AT1 receptor blocker,valsartan,but inhibited by AT2 receptor blocker PD123319. Moreover,we observed that an AT2 receptor agonist,CGP42112A,alone enhanced MMS2 expression. Neurons treated with small interfering RNA of MMS2 failed to exhibit neurite outgrowth and synapse formation. Moreover,the increase in AT2 receptor-induced MMS2 mRNA expression was enhanced by overexpression of ATIP but inhibited by small interfering RNA of SHP-1 and overexpression of catalytically dominant-negative SHP-1 or a tyrosine phosphatase inhibitor,sodium orthovanadate. After AT2 receptor stimulation,ATIP and SHP-1 were translocated into the nucleus after formation of their complex. Furthermore,increased MMS2 expression mediates the inhibitor of DNA binding 1 proteolysis and promotes DNA repair. These results provide a new insight into the contribution of AT2 receptor stimulation to neural differentiation via transactivation of MMS2 expression involving the association of ATIP and SHP-1.
View Publication
文献
Jenkins RB et al. (OCT 2006)
Cancer research 66 20 9852--61
A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma.
Combined deletion of chromosomes 1p and 19q is associated with improved prognosis and responsiveness to therapy in patients with anaplastic oligodendroglioma. The deletions usually involve whole chromosome arms,suggesting a t(1;19)(q10;p10). Using stem cell medium,we cultured a few tumors. Paraffin-embedded tissue was obtained from 21 Mayo Clinic patients and 98 patients enrolled in 2 North Central Cancer Treatment Group (NCCTG) low-grade glioma trials. Interphase fusion of CEP1 and 19p12 probes detected the t(1;19). 1p/19q deletions were evaluated by fluorescence in situ hybridization. Upon culture,one oligodendroglioma contained an unbalanced 45,XX,t(1;19)(q10;p10). CEP1/19p12 fusion was observed in all metaphases and 74% of interphase nuclei. Among Mayo Clinic oligodendrogliomas,the prevalence of fusion was 81%. Among NCCTG patients,CEP1/19p12 fusion prevalence was 55%,47%,and 0% among the oligodendrogliomas,mixed oligoastrocytomas,and astrocytomas,respectively. Ninety-one percent of NCCTG gliomas with 1p/19q deletion and 12% without 1p/19q deletion had CEP1/19p12 fusion (P textless 0.001,chi(2) test). The median overall survival (OS) for all patients was 8.1 years without fusion and 11.9 years with fusion (P = 0.003). The median OS for patients with low-grade oligodendroglioma was 9.1 years without fusion and 13.0 years with fusion (P = 0.01). Similar significant median OS differences were observed for patients with combined 1p/19q deletions. The absence of alterations was associated with a significantly shorter OS for patients who received higher doses of radiotherapy. Our results strongly suggest that a t(1;19)(q10;p10) mediates the combined 1p/19q deletion in human gliomas. Like combined 1p/19q deletion,the 1;19 translocation is associated with superior OS and progression-free survival in low-grade glioma patients.
View Publication
文献
Fitzgerald DP et al. (OCT 2006)
Neuroscience 142 3 703--16
Characterization of neogenin-expressing neural progenitor populations and migrating neuroblasts in the embryonic mouse forebrain.
Many studies have demonstrated a role for netrin-1-deleted in colorectal cancer (DCC) interactions in both axon guidance and neuronal migration. Neogenin,a member of the DCC receptor family,has recently been shown to be a chemorepulsive axon guidance receptor for the repulsive guidance molecule (RGM) family of guidance cues [Rajagopalan S,Deitinghoff L,Davis D,Conrad S,Skutella T,Chedotal A,Mueller B,Strittmatter S (2004) Neogenin mediates the action of repulsive guidance molecule. Nat Cell Biol 6:755-762]. Here we show that neogenin is present on neural progenitors,including neurogenic radial glia,in the embryonic mouse forebrain suggesting that neogenin expression is a hallmark of neural progenitor populations. Neogenin-positive progenitors were isolated from embryonic day 14.5 forebrain using flow cytometry and cultured as neurospheres. Neogenin-positive progenitors gave rise to neurospheres displaying a high proliferative and neurogenic potential. In contrast,neogenin-negative forebrain cells did not produce long-term neurosphere cultures and did not possess a significant neurogenic potential. These observations argue strongly for a role for neogenin in neural progenitor biology. In addition,we also observed neogenin on parvalbumin- and calbindin-positive interneuron neuroblasts that were migrating through the medial and lateral ganglionic eminences,suggesting a role for neogenin in tangential migration. Therefore,neogenin may be a multi-functional receptor regulating both progenitor activity and neuroblast migration in the embryonic forebrain.
View Publication
文献
Kim S-J et al. (MAY 2006)
Human molecular genetics 15 10 1580--6
Palmitoyl-protein thioesterase-1 deficiency leads to the activation of caspase-9 and contributes to rapid neurodegeneration in INCL.
The infantile neuronal ceroid lipofuscinosis (INCL),a rare (one in 100 000 births) but one of the most lethal inherited neurodegenerative storage disorders of childhood,is caused by inactivating mutations in the palmitoyl-protein thioesterase-1 (PPT1) gene. PPT1 cleaves thioester linkages in s-acylated (palmitoylated) proteins and facilitates their degradation and/or recycling. Thus,PPT1-deficiency leads to an abnormal intracellular accumulation of s-acylated proteins causing INCL pathogenesis. Although neuronal apoptosis is the suggested cause of neurodegeneration in this disease,the molecular mechanism(s) remains poorly understood. We recently reported that one of the major pathways of neuronal apoptosis in PPT1-knockout (PPT1-KO) mice that mimic INCL,is mediated by endoplasmic reticulum (ER) stress-induced caspase-12 activation. ER stress also increases the production of reactive oxygen species (ROS),disrupts Ca(2+) homeostasis and increases the potential for destabilizing mitochondrial membrane. Mitochondrial membrane destabilization activates caspase-9 present in this organelle,and can mediate apoptosis. We report here that the levels of superoxide dismutase (SOD),most likely induced by ROS,in human INCL as well as PPT1-KO mouse brain tissues are markedly elevated. Moreover,we demonstrate that activated caspase-3 and cleaved-PARP,indicative of apoptosis,are also increased in these tissues. Using cultured neurospheres from PPT1-KO and wild-type mouse fetuses,we further demonstrate that the levels of ROS,SOD-2,cleaved-caspase-9,activated caspase-3 and cleaved-PARP are elevated. We propose that: (i) ER stress due to PPT1-deficiency increases ROS and disrupts calcium homeostasis activating caspase-9 and (ii) caspase-9 activation mediates caspase-3 activation and apoptosis contributing to rapid neurodegeneration in INCL.
View Publication
文献
D'Ascenzo M et al. (FEB 2006)
The European journal of neuroscience 23 4 935--44
Role of L-type Ca2+ channels in neural stem/progenitor cell differentiation.
Ca(2+) influx through voltage-gated Ca(2+) channels,especially the L-type (Ca(v)1),activates downstream signaling to the nucleus that affects gene expression and,consequently,cell fate. We hypothesized that these Ca(2+) signals may also influence the neuronal differentiation of neural stem/progenitor cells (NSCs) derived from the brain cortex of postnatal mice. We first studied Ca(2+) transients induced by membrane depolarization in Fluo 4-AM-loaded NSCs using confocal microscopy. Undifferentiated cells (nestin(+)) exhibited no detectable Ca(2+) signals whereas,during 12 days of fetal bovine serum-induced differentiation,neurons (beta-III-tubulin(+)/MAP2(+)) displayed time-dependent increases in intracellular Ca(2+) transients,with DeltaF/F ratios ranging from 0.4 on day 3 to 3.3 on day 12. Patch-clamp experiments revealed similar correlation between NSC differentiation and macroscopic Ba(2+) current density. These currents were markedly reduced (-77%) by Ca(v)1 channel blockade with 5 microm nifedipine. To determine the influence of Ca(v)1-mediated Ca(2+) influx on NSC differentiation,cells were cultured in differentiative medium with either nifedipine (5 microm) or the L-channel activator Bay K 8644 (10 microm). The latter treatment significantly increased the percentage of beta-III-tubulin(+)/MAP2(+) cells whereas nifedipine produced opposite effects. Pretreatment with nifedipine also inhibited the functional maturation of neurons,which responded to membrane depolarization with weak Ca(2+) signals. Conversely,Bay K 8644 pretreatment significantly enhanced the percentage of responsive cells and the amplitudes of Ca(2+) transients. These data suggest that NSC differentiation is strongly correlated with the expression of voltage-gated Ca(2+) channels,especially the Ca(v)1,and that Ca(2+) influx through these channels plays a key role in promoting neuronal differentiation.
View Publication
文献
Zhang Z et al. (JAN 2006)
Human molecular genetics 15 2 337--46
Palmitoyl-protein thioesterase-1 deficiency mediates the activation of the unfolded protein response and neuronal apoptosis in INCL.
Numerous proteins undergo modification by palmitic acid (S-acylation) for their biological functions including signal transduction,vesicular transport and maintenance of cellular architecture. Although palmitoylation is an essential modification,these proteins must also undergo depalmitoylation for their degradation by lysosomal proteases. Palmitoyl-protein thioesterase-1 (PPT1),a lysosomal enzyme,cleaves thioester linkages in S-acylated proteins and removes palmitate residues facilitating the degradation of these proteins. Thus,inactivating mutations in the PPT1 gene cause infantile neuronal ceroid lipofuscinosis (INCL),a devastating neurodegenerative storage disorder of childhood. Although rapidly progressing brain atrophy is the most dramatic pathological manifestation of INCL,the molecular mechanism(s) remains unclear. Using PPT1-knockout (PPT1-KO) mice that mimic human INCL,we report here that the endoplasmic reticulum (ER) in the brain cells of these mice is structurally abnormal. Further,we demonstrate that the level of growth-associated protein-43 (GAP-43),a palmitoylated neuronal protein,is elevated in the brains of PPT1-KO mice. Moreover,forced expression of GAP-43 in PPT1-deficient cells results in the abnormal accumulation of this protein in the ER. Consistent with these results,we found evidence for the activation of unfolded protein response (UPR) marked by elevated levels of phosphorylated translation initiation factor,eIF2alpha,increased expression of chaperone proteins such as glucose-regulated protein-78 and activation of caspase-12,a cysteine proteinase in the ER,mediating caspase-3 activation and apoptosis. Our results,for the first time,link PPT1 deficiency with the activation of UPR,apoptosis and neurodegeneration in INCL and identify potential targets for therapeutic intervention in this uniformly fatal disease.
View Publication
文献
Kishigami S et al. (FEB 2006)
Biochemical and biophysical research communications 340 1 183--9
Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer.
The low success rate of animal cloning by somatic cell nuclear transfer (SCNT) is believed to be associated with epigenetic errors including abnormal DNA hypermethylation. Recently,we elucidated by using round spermatids that,after nuclear transfer,treatment of zygotes with trichostatin A (TSA),an inhibitor of histone deacetylase,can remarkably reduce abnormal DNA hypermethylation depending on the origins of transferred nuclei and their genomic regions [S. Kishigami,N. Van Thuan,T. Hikichi,H. Ohta,S. Wakayama. E. Mizutani,T. Wakayama,Epigenetic abnormalities of the mouse paternal zygotic genome associated with microinsemination of round spermatids,Dev. Biol. (2005) in press]. Here,we found that 5-50 nM TSA-treatment for 10 h following oocyte activation resulted in more efficient in vitro development of somatic cloned embryos to the blastocyst stage from 2- to 5-fold depending on the donor cells including tail tip cells,spleen cells,neural stem cells,and cumulus cells. This TSA-treatment also led to more than 5-fold increase in success rate of mouse cloning from cumulus cells without obvious abnormality but failed to improve ES cloning success. Further,we succeeded in establishment of nuclear transfer-embryonic stem (NT-ES) cells from TSA-treated cloned blastocyst at a rate three times higher than those from untreated cloned blastocysts. Thus,our data indicate that TSA-treatment after SCNT in mice can dramatically improve the practical application of current cloning techniques.
View Publication
文献
Coksaygan T et al. (FEB 2006)
Experimental neurology 197 2 475--85
Neurogenesis in Talpha-1 tubulin transgenic mice during development and after injury.
Talpha-1 tubulin promoter-driven EYFP expression is seen in murine neurons born as early as E9.5. Double labeling with markers for stem cells (Sox 1,Sox 2,nestin),glial progenitors (S100beta,NG2,Olig2),and neuronal progenitors (doublecortin,betaIII-tubulin,PSA-NCAM) show that Talpha-1 tubulin expression is limited to early born neurons. BrdU uptake and double labeling with neuronal progenitor markers in vivo and in vitro show that EYFP-expressing cells are postmitotic and Talpha-1 tubulin EYFP precedes the expression of MAP-2 and NeuN,and follows the expression of PSA-NCAM,doublecortin (Dcx),and betaIII-tubulin. Talpha-1 tubulin promoter-driven EYFP expression is transient and disappears in most neurons by P0. Persistent EYFP expression is mainly limited to scattered cells in the subventricular zone (SVZ),rostral migratory stream,and hippocampus. However,there are some areas that continue to express Talpha-1 tubulin in the adult without apparent neurogenesis. The number of EYFP-expressing cells declines with age indicating that Talpha-1 tubulin accurately identifies early born postmitotic neurons throughout development but less clearly in the adult. Assessment of neurogenesis after stab wound injuries in the cortex,cerebellum and spinal cord of adult animals shows no neurogenesis in most areas with an increase in BrdU incorporation in glial and other non neuronal populations. An up-regulation of Talpha-1 tubulin can be seen in certain areas unaccompanied by new neurogenesis. Our results suggest that even if stem cells proliferate their ability to generate neurons is limited and caution is warranted in attributing increased BrdU incorporation to stem cells or cells fated to be neurons even in neurogenic areas.
View Publication
文献
Bull ND and Bartlett PF (NOV 2005)
The Journal of neuroscience : the official journal of the Society for Neuroscience 25 47 10815--21
The adult mouse hippocampal progenitor is neurogenic but not a stem cell.
The aim of this investigation was to characterize the proliferative precursor cells in the adult mouse hippocampal region. Given that a very large number of new hippocampal cells are generated over the lifetime of an animal,it is predicted that a neural stem cell is ultimately responsible for maintaining this genesis. Although it is generally accepted that a proliferative precursor resides within the hippocampus,contradictory reports exist regarding the classification of this cell. Is it a true stem cell or a more limited progenitor? Using a strict functional definition of a neural stem cell and a number of in vitro assays,we report that the resident hippocampal precursor is a progenitor capable of proliferation and multipotential differentiation but is unable to self-renew and thus proliferate indefinitely. Furthermore,the mitogen FGF-2 stimulates proliferation of these cells to a greater extent than epidermal growth factor (EGF). In addition,we found that BDNF was essential for the production of neurons from the hippocampal progenitor cells,being required during proliferation to trigger neuronal fate. In contrast,a bona fide neural stem cell was identified in the lateral wall of the lateral ventricle surrounding the hippocampus. Interestingly,EGF proved to be the stronger mitogenic factor for this cell,which was clearly a different precursor from the resident hippocampal progenitor. These results suggest that the stem cell ultimately responsible for adult hippocampal neurogenesis resides outside the hippocampus,producing progenitor cells that migrate into the neurogenic zones and proliferate to produce new neurons and glia.
View Publication
文献
Udagawa J et al. (FEB 2006)
Endocrinology 147 2 647--58
The role of leptin in the development of the cerebral cortex in mouse embryos.
Leptin is detected in the sera,and leptin receptors are expressed in the cerebrum of mouse embryos,suggesting that leptin plays a role in cerebral development. Compared with the wild type,leptin-deficient (ob/ob) mice had fewer cells at embryonic day (E) 16 and E18 and had fewer 5-bromo-2'-deoxyuridine(+) cells at E14 and E16 in the neuroepithelium. Intracerebroventricular leptin injection in E14 ob/ob embryos increased the number of neuroepithelium cells at E16. In cultured neurosphere cells,leptin treatment increased Hes1 mRNA expression and maintained neural progenitors. Astrocyte differentiation was induced by low-dose (0.1 microg/ml) but not high-dose (1 microg/ml) leptin. High-dose leptin decreased Id mRNA and increased Ngn1 mRNA in neurosphere cells. The neuropeptide Y mRNA level in the cortical plate was lower in ob/ob than the wild type at E16 and E18. These results suggest that leptin maintains neural progenitors and is related to glial and neuronal development in embryos.
View Publication