Shimada H et al. (JAN 2012)
Biochemical and Biophysical Research Communications 417 2 659--664
Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia
Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely,while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential,the long reprogramming process (up to 1. month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study,we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells,using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4,Sox2,Klf4,and L-Myc. Under optimized conditions,we observed human embryonic stem (ES)-like cells as early as 6. days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate,morphology,pluripotency-associated markers,global gene expression patterns,genome-wide DNA methylation states,and the ability to differentiate into all three of the germ layers,both in vitro and in vivo. Our method,when combined with chemical inhibitors under conditions of physiological hypoxia,offers a powerful tool for rapidly generating bona fide human iPS cells and facilitates the application of iPS cell technology to biomedical research. textcopyright 2011 Elsevier Inc.
View Publication
Acquisition of a quantitative, stoichiometrically conserved ratiometric marker of maturation status in stem cell-derived cardiac myocytes
There is no consensus in the stem cell field as to what constitutes the mature cardiac myocyte. Thus,helping formalize a molecular signature for cardiac myocyte maturation would advance the field. In the mammalian heart,inactivation of the fetal" TNNI gene
View Publication
Chen G et al. (AUG 2010)
Cell stem cell 7 2 240--8
Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells.
Human ESCs are the pluripotent precursor of the three embryonic germ layers. Human ESCs exhibit basal-apical polarity,junctional complexes,integrin-dependent matrix adhesion,and E-cadherin-dependent cell-cell adhesion,all characteristics shared by the epiblast epithelium of the intact mammalian embryo. After disruption of epithelial structures,programmed cell death is commonly observed. If individualized human ESCs are prevented from reattaching and forming colonies,their viability is significantly reduced. Here,we show that actin-myosin contraction is a critical effector of the cell death response to human ESC dissociation. Inhibition of myosin heavy chain ATPase,downregulation of myosin heavy chain,and downregulation of myosin light chain all increase survival and cloning efficiency of individualized human ESCs. ROCK inhibition decreases phosphorylation of myosin light chain,suggesting that inhibition of actin-myosin contraction is also the mechanism through which ROCK inhibitors increase cloning efficiency of human ESCs.
View Publication
Fuhrmann G et al. (MAY 2015)
Journal of controlled release : official journal of the Controlled Release Society 205 35--44
Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins
Extracellular vesicles (EVs) are phospholipid-based particles endogenously produced by cells. Their natural composition and selective cell interactions make them promising drug carriers. However,in order to harness their properties,efficient exogenous drug encapsulation methods need to be investigated. Here,EVs from various cellular origins (endothelial,cancer and stem cells) were produced and characterised for size and composition. Porphyrins of different hydrophobicities were employed as model drugs and encapsulated into EVs using various passive and active methods (electroporation,saponin,extrusion and dialysis). Hydrophobic compounds loaded very efficiently into EVs and at significantly higher amounts than into standard liposomes composed of phosphocholine and cholesterol using passive incubation. Moreover,loading into EVs significantly increased the cellular uptake by textgreater60% and the photodynamic effect of hydrophobic porphyrins in vitro compared to free or liposome encapsulated drug. The active encapsulation techniques,with the saponin-assisted method in particular,allowed an up to 11 fold higher drug loading of hydrophilic porphyrins compared to passive methods. EVs loaded with hydrophilic porphyrins induced a stronger phototoxic effect than free drug in a cancer cell model. Our findings create a firm basis for the development of EVs as smart drug carriers based on straightforward and transferable methods.
View Publication
Duelen R et al. ( 2017)
Stem cells international 2017 4651238
Activin A Modulates CRIPTO-1/HNF4α(+) Cells to Guide Cardiac Differentiation from Human Embryonic Stem Cells.
The use of human pluripotent stem cells in basic and translational cardiac research requires efficient differentiation protocols towards cardiomyocytes. In vitro differentiation yields heterogeneous populations of ventricular-,atrial-,and nodal-like cells hindering their potential applications in regenerative therapies. We described the effect of the growth factor Activin A during early human embryonic stem cell fate determination in cardiac differentiation. Addition of high levels of Activin A during embryoid body cardiac differentiation augmented the generation of endoderm derivatives,which in turn promoted cardiomyocyte differentiation. Moreover,a dose-dependent increase in the coreceptor expression of the TGF-β superfamily member CRIPTO-1 was observed in response to Activin A. We hypothesized that interactions between cells derived from meso- and endodermal lineages in embryoid bodies contributed to improved cell maturation in early stages of cardiac differentiation,improving the beating frequency and the percentage of contracting embryoid bodies. Activin A did not seem to affect the properties of cardiomyocytes at later stages of differentiation,measuring action potentials,and intracellular Ca(2+) dynamics. These findings are relevant for improving our understanding on human heart development,and the proposed protocol could be further explored to obtain cardiomyocytes with functional phenotypes,similar to those observed in adult cardiac myocytes.
View Publication
Kim M-SS et al. (FEB 2015)
PLoS ONE 10 2 e0118670
Activin-A and Bmp4 levels modulate cell type specification during CHIR-induced cardiomyogenesis
The use of human pluripotent cell progeny for cardiac disease modeling,drug testing and therapeutics requires the ability to efficiently induce pluripotent cells into the cardiomyogenic lineage. Although direct activation of the Activin-A and/or Bmp pathways with growth factors yields context-dependent success,recent studies have shown that induction of Wnt signaling using low molecular weight molecules such as CHIR,which in turn induces the Activin-A and Bmp pathways,is widely effective. To further enhance the reproducibility of CHIR-induced cardiomyogenesis,and to ultimately promote myocyte maturation,we are using exogenous growth factors to optimize cardiomyogenic signaling downstream of CHIR induction. As indicated by RNA-seq,induction with CHIR during Day 1 (Days 0-1) was followed by immediate expression of Nodal ligands and receptors,followed later by Bmp ligands and receptors. Co-induction with CHIR and high levels of the Nodal mimetic Activin-A (50-100 ng/ml) during Day 0-1 efficiently induced definitive endoderm,whereas CHIR supplemented with Activin-A at low levels (10 ng/ml) consistently improved cardiomyogenic efficiency,even when CHIR alone was ineffective. Moreover,co-induction using CHIR and low levels of Activin-A apparently increased the rate of cardiomyogenesis,as indicated by the initial appearance of rhythmically beating cells by Day 6 instead of Day 8. By contrast,co-induction with CHIR plus low levels (3-10 ng/ml) of Bmp4 during Day 0-1 consistently and strongly inhibited cardiomyogenesis. These findings,which demonstrate that cardiomyogenic efficacy is improved by optimizing levels of CHIR-induced growth factors when applied in accord with their sequence of endogenous expression,are consistent with the idea that Nodal (Activin-A) levels toggle the entry of cells into the endodermal or mesodermal lineages,while Bmp levels regulate subsequent allocation into mesodermal cell types.
View Publication
Hino K et al. (JUL 2017)
The Journal of clinical investigation
Activin-A enhances mTOR signaling to promote aberrant chondrogenesis in fibrodysplasia ossificans progressiva.
Fibrodysplasia ossificans progressiva (FOP) is a rare and intractable disease characterized by extraskeletal bone formation through endochondral ossification. Patients with FOP harbor point mutations in ACVR1,a type I receptor for BMPs. Although mutated ACVR1 (FOP-ACVR1) has been shown to render hyperactivity in BMP signaling,we and others have uncovered a mechanism by which FOP-ACVR1 mistransduces BMP signaling in response to Activin-A,a molecule that normally transduces TGF-β signaling. Although Activin-A evokes enhanced chondrogenesis in vitro and heterotopic ossification (HO) in vivo,the underlying mechanisms have yet to be revealed. To this end,we developed a high-throughput screening (HTS) system using FOP patient-derived induced pluripotent stem cells (FOP-iPSCs) to identify pivotal pathways in enhanced chondrogenesis that are initiated by Activin-A. In a screen of 6,809 small-molecule compounds,we identified mTOR signaling as a critical pathway for the aberrant chondrogenesis of mesenchymal stromal cells derived from FOP-iPSCs (FOP-iMSCs). Two different HO mouse models,an FOP model mouse expressing FOP-ACVR1 and an FOP-iPSC-based HO model mouse,revealed critical roles for mTOR signaling in vivo. Moreover,we identified ENPP2,an enzyme that generates lysophosphatidic acid,as a linker of FOP-ACVR1 and mTOR signaling in chondrogenesis. These results uncovered the crucial role of the Activin-A/FOP-ACVR1/ENPP2/mTOR axis in FOP pathogenesis.
View Publication
Ankam S et al. (APR 2015)
Biomaterials 47 20--28
Actomyosin contractility plays a role in MAP2 expression during nanotopography-directed neuronal differentiation of human embryonic stem cells
Pluripotent human embryonic stem cells (hESCs) have the capability of differentiating into different lineages based on specific environmental cues. We had previously shown that hESCs can be primed to differentiate into either neurons or glial cells,depending on the arrangement,geometry and size of their substrate topography. In particular,anisotropically patterned substrates like gratings were found to favour the differentiation of hESCs into neurons rather than glial cells. In this study,our aim is to elucidate the underlying mechanisms of topography-induced differentiation of hESCs towards neuronal lineages. We show that high actomyosin contractility induced by a nano-grating topography is crucial for neuronal maturation. Treatment of cells with the myosin II inhibitor (blebbistatin) and myosin light chain kinase inhibitor (ML-7) greatly reduces the expression level of microtubule-associated protein 2 (MAP2). On the other hand,our qPCR array results showed that PAX5,BRN3A and NEUROD1 were highly expressed in hESCs grown on nano-grating substrates as compared to unpatterned substrates,suggesting the possible involvement of these genes in topography-mediated neuronal differentiation of hESCs. Interestingly,YAP was localized to the cytoplasm of differentiating hESCs. Taken together,our study has provided new insights in understanding the mechanotransduction of topographical cues during neuronal differentiation of hESCs.
View Publication
Liberski AR et al. (JUL 2013)
Journal of Proteome Research 12 7 3233--3245
Adaptation of a Commonly Used, Chemically Defined Medium for Human Embryonic Stem Cells to Stable Isotope Labeling with Amino Acids in Cell Culture
Metabolic labeling with stable isotopes is a prominent technique for comparative quantitative proteomics,and stable isotope labeling with amino acids in cell culture (SILAC) is the most commonly used approach. SILAC is,however,traditionally limited to simple tissue culture regimens and only rarely employed in the context of complex culturing conditions as those required for human embryonic stem cells (hESCs). Classic hESC culture is based on the use of mouse embryonic fibroblasts (MEFs) as a feeder layer,and as a result,possible xenogeneic contamination,contribution of unlabeled amino acids by the feeders,interlaboratory variability of MEF preparation,and the overall complexity of the culture system are all of concern in conjunction with SILAC. We demonstrate a feeder-free SILAC culture system based on a customized version of a commonly used,chemically defined hESC medium developed by Ludwig et al. and commercially available as mTeSR1 [mTeSR1 is a trade mark of WiCell (Madison,WI) licensed to STEMCELL Technologies (Vancouver,Canada)]. This medium,together with adjustments to the culturing protocol,facilitates reproducible labeling that is easily scalable to the protein amounts required by proteomic work flows. It greatly enhances the usability of quantitative proteomics as a tool for the study of mechanisms underlying hESCs differentiation and self-renewal. Associated data have been deposited to the ProteomeXchange with the identifier PXD000151.
View Publication
Behar RZ et al. (NOV 2012)
Current protocols in stem cell biology 1 SUPPL.23 Unit 1C.13
Adaptation of stem cells to 96-well plate assays: use of human embryonic and mouse neural stem cells in the MTT assay.
Human embryonic stem cells (hESC) are difficult to adapt to 96-well plate assays,such as the MTT assay,because they survive best when plated as colonies,which are not easily counted and plated accurately. Two methods were developed to address this problem. In the first,ROCK inhibitor (ROCKi) was used,which allows accurate counting and plating of single hESC. In the second,small colonies were plated without ROCKi but with adaptations for accurate counting and plating. The MTT assay was also adapted for use with mouse neural stem cells. These methods allow the MTT assay to be conducted rapidly and accurately with high reproducibility between replicate experiments. When screening volatile chemicals in a 96-well plate,vapor effects may occur and dose ranges must be carefully defined. The methods were validated using the NIH assay guidance tool. These methodss could readily be translated to other 96-well plate assay.
View Publication