Lin S and Talbot P (JAN 2011)
Methods in molecular biology (Clifton,N.J.) 690 31--56
Methods for culturing mouse and human embryonic stem cells
Mouse embryonic stem cells (mESCs) were first derived and cultured almost 30 years ago and ever since have been valuable tools for creating knockout mice and for studying early mammalian development. More recently (1998),human embryonic stem cells (hESCs) have been derived from blastocysts,and numerous methods have evolved to culture hESCs in vitro in both complex and defined media. hESCs are especially important at this time as they could potentially be used to treat degenerative diseases and to access the toxicity of new drugs and environmental chemicals. For both human and mouse ESCs,fibroblast feeder layers are often used at some phase in the culturing protocol. The feeders - often mouse embryonic fibroblasts (mEFs) - provide a substrate that increases plating efficiency,helps maintain pluripotency,and facilitates survival and growth of the stem cells. Various protocols for culturing embryonic stem cells from both species are available with newer trends moving toward feeder-free and serum-free culture. The purpose of this chapter is to provide basic protocol information on the isolation of mouse embryonic fibroblasts and establishment of feeder layers,the culture of mESCs on both mEFs and on gelatin in serum-containing medium,and the culture of hESCs in defined media on both mEFs (hESC culture medium) and Matrigel (mTeSR). These basic protocols are intended for researchers wanting to develop stem cell research in their labs. These protocols have been tested in our laboratory and work well. They can be modified and adapted for any relevant user's particular purpose.
View Publication
Sato N and Brivanlou A ( 2015)
1307 71--88
Microarray Approach to Identify the Signaling Network Responsible for Self-Renewal of Human Embryonic Stem Cells
Here we introduce the representative method to culture HESCs under the feeder and feeder-free conditions,the former of which is used to maintain or expand undifferentiated HESCs,and the latter can be used for the preparation of pure HESCs RNA samples,or for screening factors influential on self-renewal of HESCs. We also describe a protocol and tips for conducting gene chip analysis focusing on widely used Affymetrix Microarrays. These techniques will provide us unprecedented scale of biological information that would illuminate a key to decipher complex signaling networks controlling pluripotency.
View Publication
Linta L et al. (APR 2013)
Stem Cells International 2013 784629
Microarray-Based Comparisons of Ion Channel Expression Patterns: Human Keratinocytes to Reprogrammed hiPSCs to Differentiated Neuronal and Cardiac Progeny
Ion channels are involved in a large variety of cellular processes including stem cell differentiation. Numerous families of ion channels are present in the organism which can be distinguished by means of,for example,ion selectivity,gating mechanism,composition,or cell biological function. To characterize the distinct expression of this group of ion channels we have compared the mRNA expression levels of ion channel genes between human keratinocyte-derived induced pluripotent stem cells (hiPSCs) and their somatic cell source,keratinocytes from plucked human hair. This comparison revealed that 26&x25; of the analyzed probes showed an upregulation of ion channels in hiPSCs while just 6&x25; were downregulated. Additionally,iPSCs express a much higher number of ion channels compared to keratinocytes. Further,to narrow down specificity of ion channel expression in iPS cells we compared their expression patterns with differentiated progeny,namely,neurons and cardiomyocytes derived from iPS cells. To conclude,hiPSCs exhibit a very considerable and diverse ion channel expression pattern. Their detailed analysis could give an insight into their contribution to many cellular processes and even disease mechanisms.
View Publication
Avior Y et al. (JUL 2015)
Hepatology 62 1 265--278
Microbial-Derived Lithocholic Acid and Vitamin Ktextlessinftextgreater2textless/inftextgreater Drive the Metabolic Maturation of Pluripotent Stem Cells-Derived and Fetal Hepatocytes
The liver is the main organ responsible for the modification,clearance,and transformational toxicity of most xenobiotics owing to its abundance in cytochrome P450 (CYP450) enzymes. However,the scarcity and variability of primary hepatocytes currently limits their utility. Human pluripotent stem cells (hPSCs) represent an excellent source of differentiated hepatocytes; however,current protocols still produce fetal-like hepatocytes with limited mature function. Interestingly,fetal hepatocytes acquire mature CYP450 expression only postpartum,suggesting that nutritional cues may drive hepatic maturation. We show that vitamin K2 and lithocholic acid,a by-product of intestinal flora,activate pregnane X receptor (PXR) and subsequent CYP3A4 and CYP2C9 expression in hPSC-derived and isolated fetal hepatocytes. Differentiated cells produce albumin and apolipoprotein B100 at levels equivalent to primary human hepatocytes,while demonstrating an 8-fold induction of CYP450 activity in response to aryl hydrocarbon receptor (AhR) agonist omeprazole and a 10-fold induction in response to PXR agonist rifampicin. Flow cytometry showed that over 83% of cells were albumin and hepatocyte nuclear factor 4 alpha (HNF4α) positive,permitting high-content screening in a 96-well plate format. Analysis of 12 compounds showed an R(2) correlation of 0.94 between TC50 values obtained in stem cell-derived hepatocytes and primary cells,compared to 0.62 for HepG2 cells. Finally,stem cell-derived hepatocytes demonstrate all toxicological endpoints examined,including steatosis,apoptosis,and cholestasis,when exposed to nine known hepatotoxins. CONCLUSION: Our work provides fresh insights into liver development,suggesting that microbial-derived cues may drive the maturation of CYP450 enzymes postpartum. Addition of these cues results in the first functional,inducible,hPSC-derived hepatocyte for predictive toxicology. (Hepatology 2015).
View Publication
Bardy J et al. (SEP 2013)
Tissue engineering. Part C,Methods 19 2 120904064742009
Microcarrier suspension cultures for high-density expansion and differentiation of human pluripotent stem cells to neural progenitor cells.
Neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (hiPSCs) can be differentiated to neural cells that model neurodegenerative diseases and be used in the screening of potential drugs to ameliorate the disease phenotype. Traditionally,NPCs are produced in 2D cultures,in low yields,using a laborious process that includes generation of embryonic bodies,plating,and colony selections. To simplify the process and generate large numbers of hiPSC-derived NPCs,we introduce a microcarrier (MC) system for the expansion of a hiPSC line and its subsequent differentiation to NPC,using iPS (IMR90) as a model cell line. In the expansion stage,a process of cell propagation in serum-free MC culture was developed first in static culture,which is then scaled up in stirred spinner flasks. A 7.7-fold expansion of iPS (IMR90) and cell yield of 1.3×10�?� cells/mL in 7 days of static MC culture were achieved. These cells maintained expression of OCT 3/4 and TRA-1-60 and possessed a normal karyotype over 10 passages. A higher cell yield of 6.1×10�?� cells/mL and 20-fold hiPSC expansion were attained using stirred spinner flasks (seeded from MC static cultures) and changing the medium-exchange regimen from once to twice a day. In the differentiation stage,NPCs were generated with 78%-85% efficiency from hiPSCs using a simple serum-free differentiation protocol. Finally,the integrated process of cell expansion and differentiation of hiPSCs into NPCs using an MC in spinner flasks yielded 333 NPCs per seeded hiPSC as compared to 53 in the classical 2D tissue culture protocol. Similar results were obtained with the HES-3 human embryonic stem cell line. These NPCs were further differentiated into βIII-tubulin�?� neurons,GFAP�?� astrocytes,and O4�?� oligodendrocytes,showing that cells maintained their multilineage differentiation potential.
View Publication
Radan L et al. (SEP 2014)
Stem cells and development 23 17 2046--2066
Microenvironmental Regulation of Telomerase Isoforms in Human Embryonic Stem Cells.
Recent evidence points to extra-telomeric,noncanonical roles for telomerase in regulating stem cell function. In this study,human embryonic stem cells (hESCs) were cultured in 20% or 2% O2 microenvironments for up to 5 days and evaluated for telomerase reverse transcriptase (TERT) expression and telomerase activity. Results showed increased cell survival and maintenance of the undifferentiated state with elevated levels of nuclear TERT in 2% O2-cultured hESCs despite no significant difference in telomerase activity compared with their high-O2-cultured counterparts. Pharmacological inhibition of telomerase activity using a synthetic tea catechin resulted in spontaneous hESC differentiation,while telomerase inhibition with a phosphorothioate oligonucleotide telomere mimic did not. Reverse transcription polymerase chain reaction (RT-PCR) analysis revealed variations in transcript levels of full-length and alternate splice variants of TERT in hESCs cultured under varying O2 atmospheres. Steric-blocking of Δα and Δβ hTERT splicing using morpholino oligonucleotides altered the hTERT splicing pattern and rapidly induced spontaneous hESC differentiation that appeared biased toward endomesodermal and neuroectodermal cell fates,respectively. Together,these results suggest that post-transcriptional regulation of TERT under varying O2 microenvironments may help regulate hESC survival,self-renewal,and differentiation capabilities through expression of extra-telomeric telomerase isoforms.
View Publication
Sato H et al. ( 2016)
Scientific reports 6 31063
Microfabric Vessels for Embryoid Body Formation and Rapid Differentiation of Pluripotent Stem Cells.
Various scalable three-dimensional culture systems for regenerative medicine using human induced pluripotent stem cells (hiPSCs) have been developed to date. However,stable production of hiPSCs with homogeneous qualities still remains a challenge. Here,we describe a novel and simple embryoid body (EB) formation system using unique microfabricated culture vessels. Furthermore,this culture system is useful for high throughput EB formation and rapid generation of differentiated cells such as neural stem cells (NSCs) from hiPSCs. The period of NSC differentiation was significantly shortened under high EB density culture conditions. Simultaneous mass production of a pure population of NSCs was possible within 4 days. These results indicate that the novel culture system might not only become a unique tool to obtain new insights into developmental biology based on human stem cells,but also provide an important tractable platform for efficient and stable production of NSCs for clinical applications.
View Publication
Carlson AL et al. (AUG 2012)
FASEB journal : official publication of the Federation of American Societies for Experimental Biology 26 8 3240--51
Microfibrous substrate geometry as a critical trigger for organization, self-renewal, and differentiation of human embryonic stem cells within synthetic 3-dimensional microenvironments.
Substrates used to culture human embryonic stem cells (hESCs) are typically 2-dimensional (2-D) in nature,with limited ability to recapitulate in vivo-like 3-dimensional (3-D) microenvironments. We examined critical determinants of hESC self-renewal in poly-d-lysine-pretreated synthetic polymer-based substrates with variable microgeometries,including planar 2-D films,macroporous 3-D sponges,and microfibrous 3-D fiber mats. Completely synthetic 2-D substrates and 3-D macroporous scaffolds failed to retain hESCs or support self-renewal or differentiation. However,synthetic microfibrous geometries made from electrospun polymer fibers were found to promote cell adhesion,viability,proliferation,self-renewal,and directed differentiation of hESCs in the absence of any exogenous matrix proteins. Mechanistic studies of hESC adhesion within microfibrous scaffolds indicated that enhanced cell confinement in such geometries increased cell-cell contacts and altered colony organization. Moreover,the microfibrous scaffolds also induced hESCs to deposit and organize extracellular matrix proteins like laminin such that the distribution of laminin was more closely associated with the cells than the Matrigel treatment,where the laminin remained associated with the coated fibers. The production of and binding to laminin was critical for formation of viable hESC colonies on synthetic fibrous scaffolds. Thus,synthetic substrates with specific 3-D microgeometries can support hESC colony formation,self-renewal,and directed differentiation to multiple lineages while obviating the stringent needs for complex,exogenous matrices. Similar scaffolds could serve as tools for developmental biology studies in 3-D and for stem cell differentiation in situ and transplantation using defined humanized conditions.
View Publication
Wang YI et al. (JUL 2016)
Biotechnology and Bioengineering
Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening
Efficient delivery of therapeutics across the neuroprotective blood-brain barrier (BBB) remains a formidable challenge for central nervous system drug development. High-fidelity in vitro models of the BBB could facilitate effective early screening of drug candidates targeting the brain. In this study,we developed a microfluidic BBB model that is capable of mimicking in vivo BBB characteristics for a prolonged period and allows for reliable in vitro drug permeability studies under recirculating perfusion. We derived brain microvascular endothelial cells (BMECs) from human induced pluripotent stem cells (hiPSCs) and cocultured them with rat primary astrocytes on the two sides of a porous membrane on a pumpless microfluidic platform for up to 10 days. The microfluidic system was designed based on the blood residence time in human brain tissues,allowing for medium recirculation at physiologically relevant perfusion rates with no pumps or external tubing,meanwhile minimizing wall shear stress to test whether shear stress is required for in vivo-like barrier properties in a microfluidic BBB model. This BBB-on-a-chip model achieved significant barrier integrity as evident by continuous tight junction formation and in vivo-like values of trans-endothelial electrical resistance (TEER). The TEER levels peaked above 4000 $$ textperiodcentered cm(2) on day 3 on chip and were sustained above 2000 $$ textperiodcentered cm(2) up to 10 days,which are the highest sustained TEER values reported in a microfluidic model. We evaluated the capacity of our microfluidic BBB model to be used for drug permeability studies using large molecules (FITC-dextrans) and model drugs (caffeine,cimetidine,and doxorubicin). Our analyses demonstrated that the permeability coefficients measured using our model were comparable to in vivo values. Our BBB-on-a-chip model closely mimics physiological BBB barrier functions and will be a valuable tool for screening of drug candidates. The residence time-based design of a microfluidic platform will enable integration with other organ modules to simulate multi-organ interactions on drug response. Biotechnol. Bioeng. 2016;9999: 1-11. textcopyright 2016 Wiley Periodicals,Inc.
View Publication
Kamei K-i et al. (MAY 2010)
Lab on a chip 10 9 1113--9
Microfluidic image cytometry for quantitative single-cell profiling of human pluripotent stem cells in chemically defined conditions.
Microfluidic image cytometry (MIC) has been developed to study phenotypes of various hPSC lines by screening several chemically defined serum/feeder-free conditions. A chemically defined hPSC culture was established using 20 ng mL(-1) of bFGF on 20 microg mL(-1) of Matrigel to grow hPSCs over a week in an undifferentiated state. Following hPSC culture,we conducted quantitative MIC to perform a single cell profiling of simultaneously detected protein expression (OCT4 and SSEA1). Using clustering analysis,we were able to systematically compare the characteristics of various hPSC lines in different conditions.
View Publication
Mashimo Y and Kamei K-II ( 2015)
1346 85--98
Microfluidic Image Cytometry for Single-Cell Phenotyping of Human Pluripotent Stem Cells
A microfluidic human pluripotent stem cell (hPSC) array has been developed for robust and reproducible hPSC culture methods to assess chemically defined serum- and feeder-free culture conditions. This microfluidic platform,combined with image cytometry,enables the systematic analysis of multiple simultaneously detected marker expression in individual cells,for screening of various chemically defined media across hPSC lines,and the study of phenotypic responses.
View Publication