Zhang S et al. (AUG 2011)
Human Molecular Genetics 20 16 3176--3187
Rescue of ATP7B function in hepatocyte-like cells from Wilson's disease induced pluripotent stem cells using gene therapy or the chaperone drug curcumin.
Directed hepatocyte differentiation from human induced pluripotent stem cells (iPSCs) potentially provides a unique platform for modeling liver genetic diseases and performing drug-toxicity screening in vitro. Wilson's disease is a genetic disease caused by mutations in the ATP7B gene,whose product is a liver transporter protein responsible for coordinated copper export into bile and blood. Interestingly,the spectrum of ATP7B mutations is vast and can influence clinical presentation (a variable spectrum of hepatic and neural manifestations),though the reason is not well understood. We describe the generation of iPSCs from a Chinese patient with Wilson's disease that bears the R778L Chinese hotspot mutation in the ATP7B gene. These iPSCs were pluripotent and could be readily differentiated into hepatocyte-like cells that displayed abnormal cytoplasmic localization of mutated ATP7B and defective copper transport. Moreover,gene correction using a self-inactivating lentiviral vector that expresses codon optimized-ATP7B or treatment with the chaperone drug curcumin could reverse the functional defect in vitro. Hence,our work describes an attractive model for studying the pathogenesis of Wilson's disease that is valuable for screening compounds or gene therapy approaches aimed to correct the abnormality. In the future,once relevant safety concerns (including the stability of the mature liver-like phenotype) and technical issues for the transplantation procedure are solved,hepatocyte-like cells from similarly genetically corrected iPSCs could be an option for autologous transplantation in Wilson's disease.
View Publication
Takashima Y et al. (SEP 2014)
Cell 158 6 1254--1269
Resetting transcription factor control circuitry toward ground-state pluripotency in human.
Current human pluripotent stem cells lack the transcription factor circuitry that governs the ground state of mouse embryonic stem cells (ESC). Here,we report that short-term expression of two components,NANOG and KLF2,is sufficient to ignite other elements of the network and reset the human pluripotent state. Inhibition of ERK and protein kinase C sustains a transgene-independent rewired state. Reset cells self-renew continuously without ERK signaling,are phenotypically stable,and are karyotypically intact. They differentiate in vitro and form teratomas in vivo. Metabolism is reprogrammed with activation of mitochondrial respiration as in ESC. DNA methylation is dramatically reduced and transcriptome state is globally realigned across multiple cell lines. Depletion of ground-state transcription factors,TFCP2L1 or KLF4,has marginal impact on conventional human pluripotent stem cells but collapses the reset state. These findings demonstrate feasibility of installing and propagating functional control circuitry for ground-state pluripotency in human cells.
View Publication
Liu H et al. ( 2016)
Stem Cells International 2016 2524092
Resveratrol enhances cardiomyocyte differentiation of human induced pluripotent stem cells through inhibiting canonical wnt signal pathway and enhancing serum response factor-mir-1 axis
Resveratrol (trans-3,5,4'-trihydroxystilbene) (RSV) is a natural polyphenol with protective effects over cardiac tissues and can affect cell survival and differentiation in cardiac stem cells transplantation. However,whether this agent can affect cardiomyocytes (CMs) differentiation of induced pluripotent stem cells (iPSCs) is not yet clear. This study explored whether RSV can affect CMs differentiation of human iPSCs. Under embryoid bodies (EBs) condition,the effect of RSV on the change of pluripotent markers,endoderm markers,mesoderm markers,and ectoderm markers was measured using qRT-PCR. Under CM differentiation culture,the effect of RSV on CM specific markers was also measured. The regulative role of RSV over canonical Wnt signal pathway and serum response factor- (SRF-) miR-1 axis and the functions of these two axes were further studied. Results showed that RSV had no effect on the self-renewal of human iPSCs but could promote mesoderm differentiation. Under CM differentiation culture,RSV could promote CM differentiation of human iPSCs through suppressing canonical Wnt signal pathway and enhancing SRF-miR-1 axis.
View Publication
K. B. Langer et al. (APR 2018)
Stem cell reports 10 4 1282--1293
Retinal Ganglion Cell Diversity and Subtype Specification from Human Pluripotent Stem Cells.
Retinal ganglion cells (RGCs) are the projection neurons of the retina and transmit visual information to postsynaptic targets in the brain. While this function is shared among nearly all RGCs,this class of cell is remarkably diverse,comprised of multiple subtypes. Previous efforts have identified numerous RGC subtypes in animal models,but less attention has been paid to human RGCs. Thus,efforts of this study examined the diversity of RGCs differentiated from human pluripotent stem cells (hPSCs) and characterized defined subtypes through the expression of subtype-specific markers. Further investigation of these subtypes was achieved using single-cell transcriptomics,confirming the combinatorial expression of molecular markers associated with these subtypes,and also provided insight into more subtype-specific markers. Thus,the results of this study describe the derivation of RGC subtypes from hPSCs and will support the future exploration of phenotypic and functional diversity within human RGCs.
View Publication
Retinoblastoma-binding proteins 4 and 9 are important for human pluripotent stem cell maintenance.
OBJECTIVE: The molecular mechanisms that maintain human pluripotent stem (PS) cells are not completely understood. Here we sought to identify new candidate PS cell regulators to facilitate future improvements in their generation,expansion,and differentiation. MATERIALS AND METHODS: We used bioinformatic analyses of multiple serial-analysis-of-gene-expression libraries (generated from human PS cells and their differentiated derivatives),together with small interfering RNA (siRNA) screening to identify candidate pluripotency regulators. Validation of candidate regulators involved promoter analyses,Affymetrix profiling,real-time PCR,and immunoprecipitation. RESULTS: Promoter analysis of genes differentially expressed across multiple serial-analysis-of-gene-expression libraries identified E2F motifs in the promoters of many PS cell-specific genes (e.g.,POU5F1,NANOG,SOX2,FOXD3). siRNA analyses identified two retinoblastoma binding proteins (RBBP4,RBBP9) as required for maintenance of multiple human PS cell types. Both RBBPs were bound to RB in human PS cells,and E2F motifs were present in the promoters of genes whose expression was altered by decreasing RBBP4 and RBBP9 expression. Affymetrix and real-time PCR studies of siRNA-treated human PS cells showed that reduced RBBP4 or RBBP9 expression concomitantly decreased expression of POU5F1,NANOG,SOX2,and/or FOXD3 plus certain cell cycle genes (e.g.,CCNA2,CCNB1),while increasing expression of genes involved in organogenesis (particularly neurogenesis). CONCLUSIONS: These results reveal new candidate positive regulators of human PS cells,providing evidence of their ability to regulate expression of pluripotency,cell cycle,and differentiation genes in human PS cells. These data provide valuable new leads for further elucidating mechanisms of human pluripotency.
View Publication
Wobus AM et al. (JUN 1997)
Journal of molecular and cellular cardiology 29 6 1525--39
Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes.
Pluripotent embryonic stem (ES) cells spontaneously differentiate via embryo-like aggregates into cardiomyocytes of pacemaker-,atrium- and ventricle-like type,which can be distinguished by their specific patterns of action potentials. It has been shown that retinoic acid (RA) treatment during ES cell differentiation increases the number of cardiomyocytes in a time- and concentration-dependent manner. In order to test the effect of RA on cardiomyocyte differentiation and specialization into ventricle-like cardiomyocytes,we studied gene expression of beta-galactosidase driven by the ventricular myosin light chain-2 (MLC-2v) promoter as an indicator for ventricular differentiation. Clones containing the stably integrated expression vector pGNA/MLC-2.1 were selected,which revealed an increase of beta-galactosidase activity in cardiomyocytes of embryoid bodies at day 7 + 16. RA,both,in the all-trans and in the 9-cis configuration resulted in a significant acceleration of cardiomyocyte differentiation and a transient increase of beta-galactosidase activity. To test whether this acceleration of cardiac differentiation and RA-induced increase of the MLC-2v promotor/beta-galactosidase activity reflects an increase of cardiac- and ventricle-specific gene expression,a semi-quantitative RT-PCR analysis was performed for alpha-cardiac myosin heavy chain (alpha-MHC) and MLC-2v genes. It was shown that both 10(-8) M and 10(-9) M RA resulted in an increased level of alpha-cardiac MHC and MLC-2v mRNA in embryoid bodies in early,but not in terminal developmental stages. This led us to the conclusion that the RA-induced accelerated expression of cardiac-specific genes results in an enhanced development of ventricular cardiomyocytes. An increased number of ventricle-like cells after RA treatment was also found by patch-clamp analysis. The number of cardiomyocytes with Purkinje- and ventricle-like properties was shown to be increased by RA,whereas the number of pacemaker- and atrium-like cells was reduced and early pacemaker cells were not quantitatively affected.
View Publication
Yu C et al. (DEC 2010)
Blood 116 23 4786--94
Retinoic acid enhances the generation of hematopoietic progenitors from human embryonic stem cell-derived hemato-vascular precursors.
Current induction schemes directing hematopoietic differentiation of human embryonic stem cells (hESCs) are not well defined to mimic the sequential stages of hematopoietic development in vivo. Here,we report a 3-stage method to direct differentiation of hESCs toward hematopoietic progenitors in chemically defined mediums. In the first 2 stages,we efficiently generated T-positive primitive streak/mesendoderm cells and kinase domain receptor-positive (KDR(+)) platelet-derived growth factor receptor α-negative (PDGFRα(-)) hemato-vascular precursors sequentially. In the third stage,we found that cells in a spontaneous differentiation condition mainly formed erythroid colonies. Addition of all-trans retinoic acid (RA) greatly enhanced generation of hematopoietic progenitors in this stage while suppressing erythroid development. The RA-treated cells highly expressed definitive hematopoietic genes,formed large numbers of multilineage and myeloid colonies,and gave rise to greater than 45% CD45(+) hematopoietic cells. When hematopoietic progenitors were selected with CD34 and C-Kit,greater than 95% CD45(+) hematopoietic cells could be generated. In addition,we found that endogenous RA signaling at the second stage was required for vascular endothelial growth factor/basic fibroblast growth factor-induced hemato-vascular specification,whereas exogenously applied RA efficiently induced KDR(-)PDGFRα(+) paraxial mesoderm cells. Our study suggests that RA signaling plays diverse roles in human mesoderm and hematopoietic development.
View Publication
Muñ et al. (JAN 2014)
Investigative Ophthalmology and Visual Science 55 1 198--209
Retinoid uptake, processing, and secretion in human iPSRPE support the visual cycle
PURPOSE: Retinal pigmented epithelium derived from human induced pluripotent stem (iPS) cells (iPS-RPE) may be a source of cells for transplantation. For this reason,it is essential to determine the functional competence of iPS-RPE. One key role of the RPE is uptake and processing of retinoids via the visual cycle. The purpose of this study is to investigate the expression of visual cycle proteins and the functional ability of the visual cycle in iPS-RPE.$$n$$nMETHODS: iPS-RPE was derived from human iPS cells. Immunocytochemistry,RT-PCR,and Western blot analysis were used to detect expression of RPE genes lecithin-retinol acyl transferase (LRAT),RPE65,cellular retinaldehyde-binding protein (CRALBP),and pigment epithelium-derived factor (PEDF). All-trans retinol was delivered to cultured cells or whole cell homogenate to assess the ability of the iPS-RPE to process retinoids.$$n$$nRESULTS: Cultured iPS-RPE expresses visual cycle genes LRAT,CRALBP,and RPE65. After incubation with all-trans retinol,iPS-RPE synthesized up to 2942 ± 551 pmol/mg protein all-trans retinyl esters. Inhibition of LRAT with N-ethylmaleimide (NEM) prevented retinyl ester synthesis. Significantly,after incubation with all-trans retinol,iPS-RPE released 188 ± 88 pmol/mg protein 11-cis retinaldehyde into the culture media.$$n$$nCONCLUSIONS: iPS-RPE develops classic RPE characteristics and maintains expression of visual cycle proteins. The results of this study confirm that iPS-RPE possesses the machinery to process retinoids for support of visual pigment regeneration. Inhibition of all-trans retinyl ester accumulation by NEM confirms LRAT is active in iPS-RPE. Finally,the detection of 11-cis retinaldehyde in the culture medium demonstrates the cells' ability to process retinoids through the visual cycle. This study demonstrates expression of key visual cycle machinery and complete visual cycle activity in iPS-RPE.
View Publication
Xu X et al. (MAR 2017)
Stem Cell Reports 8 3 619--633
Reversal of Phenotypic Abnormalities by CRISPR/Cas9-Mediated Gene Correction in Huntington Disease Patient-Derived Induced Pluripotent Stem Cells
Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in HTT. Here we report correction of HD human induced pluripotent stem cells (hiPSCs) using a CRISPR-Cas9 and piggyBac transposon-based approach. We show that both HD and corrected isogenic hiPSCs can be differentiated into excitable,synaptically active forebrain neurons. We further demonstrate that phenotypic abnormalities in HD hiPSC-derived neural cells,including impaired neural rosette formation,increased susceptibility to growth factor withdrawal,and deficits in mitochondrial respiration,are rescued in isogenic controls. Importantly,using genome-wide expression analysis,we show that a number of apparent gene expression differences detected between HD and non-related healthy control lines are absent between HD and corrected lines,suggesting that these differences are likely related to genetic background rather than HD-specific effects. Our study demonstrates correction of HD hiPSCs and associated phenotypic abnormalities,and the importance of isogenic controls for disease modeling using hiPSCs.
View Publication
Mitra I et al. (JAN 2017)
PLoS genetics 13 1 e1006516
Reverse Pathway Genetic Approach Identifies Epistasis in Autism Spectrum Disorders.
Although gene-gene interaction,or epistasis,plays a large role in complex traits in model organisms,genome-wide by genome-wide searches for two-way interaction have limited power in human studies. We thus used knowledge of a biological pathway in order to identify a contribution of epistasis to autism spectrum disorders (ASDs) in humans,a reverse-pathway genetic approach. Based on previous observation of increased ASD symptoms in Mendelian disorders of the Ras/MAPK pathway (RASopathies),we showed that common SNPs in RASopathy genes show enrichment for association signal in GWAS (P = 0.02). We then screened genome-wide for interactors with RASopathy gene SNPs and showed strong enrichment in ASD-affected individuals (P < 2.2 x 10-16),with a number of pairwise interactions meeting genome-wide criteria for significance. Finally,we utilized quantitative measures of ASD symptoms in RASopathy-affected individuals to perform modifier mapping via GWAS. One top region overlapped between these independent approaches,and we showed dysregulation of a gene in this region,GPR141,in a RASopathy neural cell line. We thus used orthogonal approaches to provide strong evidence for a contribution of epistasis to ASDs,confirm a role for the Ras/MAPK pathway in idiopathic ASDs,and to identify a convergent candidate gene that may interact with the Ras/MAPK pathway.
View Publication
Lee J-HJBJH et al. (APR 2015)
Stem Cells 33 4 1142--1152
Reversible lineage-specific priming of human embryonic stem cells can be exploited to optimize the yield of differentiated cells.
The clinical use of human embryonic stem cells (hESCs) requires efficient cellular expansion that must be paired with an ability to generate specialized progeny through differentiation. Self-renewal and differentiation are deemed inherent hallmarks of hESCs and a growing body of evidence suggests that initial culture conditions dictate these two aspects of hESC behavior. Here,we reveal that defined culture conditions using commercial mTeSR1 media augment the expansion of hESCs and enhance their capacity for neural differentiation at the expense of hematopoietic lineage competency without affecting pluripotency. This culture-induced modification was shown to be reversible,as culture in mouse embryonic fibroblast-conditioned media (MEF-CM) in subsequent passages allowed mTeSR1-expanded hESCs to re-establish hematopoietic differentiation potential. Optimal yield of hematopoietic cells can be achieved by expansion in mTeSR1 followed by a recovery period in MEF-CM. Furthermore,the lineage propensity to hematopoietic and neural cell types could be predicted via analysis of surrogate markers expressed by hESCs cultured in mTeSR1 versus MEF-CM,thereby circumventing laborious in vitro differentiation assays. Our study reveals that hESCs exist in a range of functional states and balance expansion with differentiation potential,which can be modulated by culture conditions in a predictive and quantitative manner. Stem Cells 2015;33:1142-1152.
View Publication