Alshawaf AJ et al. ( 2017)
Stem cells international 2017 7848932
WDR62 Regulates Early Neural and Glial Progenitor Specification of Human Pluripotent Stem Cells.
Mutations in WD40-repeat protein 62 (WDR62) are commonly associated with primary microcephaly and other developmental cortical malformations. We used human pluripotent stem cells (hPSC) to examine WDR62 function during human neural differentiation and model early stages of human corticogenesis. Neurospheres lacking WDR62 expression showed decreased expression of intermediate progenitor marker,TBR2,and also glial marker,S100β. In contrast,inhibition of c-Jun N-terminal kinase (JNK) signalling during hPSC neural differentiation induced upregulation of WDR62 with a corresponding increase in neural and glial progenitor markers,PAX6 and EAAT1,respectively. These findings may signify a role of WDR62 in specifying intermediate neural and glial progenitors during human pluripotent stem cell differentiation.
View Publication
Widespread Chromatin Accessibility at Repetitive Elements Links Stem Cells with Human Cancer.
Chromatin regulation is critical for differentiation and disease. However,features linking the chromatin environment of stem cells with disease remain largely unknown. We explored chromatin accessibility in embryonic and multipotent stem cells and unexpectedly identified widespread chromatin accessibility at repetitive elements. Integrating genomic and biochemical approaches,we demonstrate that these sites of increased accessibility are associated with well-positioned nucleosomes marked by distinct histone modifications. Differentiation is accompanied by chromatin remodeling at repetitive elements associated with altered expression of genes in relevant developmental pathways. Remarkably,we found that the chromatin environment of Ewing sarcoma,a mesenchymally derived tumor,is shared with primary mesenchymal stem cells (MSCs). Accessibility at repetitive elements in MSCs offers a permissive environment that is exploited by the critical oncogene responsible for this cancer. Our data demonstrate that stem cells harbor a unique chromatin landscape characterized by accessibility at repetitive elements,a feature associated with differentiation and oncogenesis.
View Publication
Zhang X et al. (JAN 2017)
Cellular signalling 29 12--22
Wnt signaling promotes hindgut fate commitment through regulating multi-lineage genes during hESC differentiation.
Wnt signaling plays essential roles in both embryonic pattern formation and postembryonic tissue homoestasis. High levels of Wnt activity repress foregut identity and facilitate hindgut fate through forming a gradient of Wnt signaling activity along the anterior-posterior axis. Here,we examined the mechanisms of Wnt signaling in hindgut development by differentiating human embryonic stem cells (hESCs) into the hindgut progenitors. We observed severe morphological changes when Wnt signaling was blocked by using Wnt antagonist Dkk1. We performed deep-transcriptome sequencing (RNA-seq) and identified 240 Wnt-activated genes and 2023 Wnt-repressed genes,respectively. Clusters of Wnt targets showed enrichment in specific biological functions,such as gastrointestinal or skeletal development" in the Wnt-activated targets and "neural or immune system development" in the Wnt-repressed targets. Moreover�
View Publication
McCracken KW et al. ( 2017)
Nature 541 7636 182--187
Wnt/β-catenin promotes gastric fundus specification in mice and humans.
Despite the global prevalence of gastric disease,there are few adequate models in which to study the fundus epithelium of the human stomach. We differentiated human pluripotent stem cells (hPSCs) into gastric organoids containing fundic epithelium by first identifying and then recapitulating key events in embryonic fundus development. We found that disruption of Wnt/β-catenin signalling in mouse embryos led to conversion of fundic to antral epithelium,and that β-catenin activation in hPSC-derived foregut progenitors promoted the development of human fundic-type gastric organoids (hFGOs). We then used hFGOs to identify temporally distinct roles for multiple signalling pathways in epithelial morphogenesis and differentiation of fundic cell types,including chief cells and functional parietal cells. hFGOs are a powerful model for studying the development of the human fundus and the molecular bases of human gastric physiology and pathophysiology,and also represent a new platform for drug discovery.
View Publication
Jiang W et al. (JUN 2013)
Stem Cell Reports 1 1 46--52
WNT3 is a biomarker capable of predicting the definitive endoderm differentiation potential of hESCs
Generation of functional cells from human pluripotent stem cells (PSCs) through in vitro differentiation is a promising approach for drug screening and cell therapy. However,the observed large and unavoidable variation in the differentiation potential of different human embryonic stem cell (hESC)/induced PSC (iPSC) lines makes the selection of an appropriate cell line for the differentiation of a particular cell lineage difficult. Here,we report identification of WNT3 as a biomarker capable of predicting definitive endoderm (DE) differentiation potential of hESCs. We show that the mRNA level of WNT3 in hESCs correlates with their DE differentiation efficiency. In addition,manipulations of hESCs through WNT3 knockdown or overexpression can respectively inhibit or promote DE differentiation in a WNT3 level-dependent manner. Finally,analysis of several hESC lines based on their WNT3 expression levels allowed accurate prediction of their DE differentiation potential. Collectively,our study supports the notion that WNT3 can serve as a biomarker for predicting DE differentiation potential of hESCs. ?? 2013 The Authors.
View Publication
Keller KC et al. (MAR 2016)
Stem Cells and Development 25 13 scd.2015.0367
Wnt5a Supports Osteogenic Lineage Decisions in Embryonic Stem Cells
The specification of pluripotent stem cells into the bone-forming osteoblasts has been explored in a number of studies. However,the current body of literature has yet to adequately address the role of Wnt glycoproteins in the differentiation of pluripotent stem cells along the osteogenic lineage. During mouse embryonic stem cell (ESC) in vitro osteogenesis,the non-canonical WNT5a is expressed early on. Cells either sorted by their positive WNT5a expression or when supplemented with recombinant WNT5a (rWNT5a) during a two-day window showed significantly enhanced osteogenic yield. Mechanistically,rWNT5a supplementation up-regulated PKC,CamKII and JNK activity while antagonizing the key effector of canonical Wnt signaling: beta-catenin. Conversely,when recombinant WNT3a (rWNT3a) or other positive regulators of �?�-catenin were employed during this same time-window there was a decrease in osteogenic marker expression. However,if rWNT3a was supplemented during a time-window following rWNT5a treatment,osteogenic differentiation was enhanced both in murine and human ESCs. Elucidating the role of these WNT ligands in directing the early stages of osteogenesis has the potential to considerably improve tissue engineering protocols and applications for regenerative medicine.
View Publication
Begum AN et al. (JUL 2014)
Translational psychiatry 4 January e414
Women with the Alzheimer's risk marker ApoE4 lose A-specific CD4 T cells 10-20 years before men.
Adaptive immunity to self-antigens causes autoimmune disorders,such as multiple sclerosis,psoriasis and type 1 diabetes; paradoxically,T- and B-cell responses to amyloid-$\$(A$\$) reduce Alzheimer's disease (AD)-associated pathology and cognitive impairment in mouse models of the disease. The manipulation of adaptive immunity has been a promising therapeutic approach for the treatment of AD,although vaccine and anti-A$\$ approaches have proven difficult in patients,thus far. CD4(+) T cells have a central role in regulating adaptive immune responses to antigens,and A$\$-specific CD4(+) T cells have been shown to reduce AD pathology in mouse models. As these cells may facilitate endogenous mechanisms that counter AD,an evaluation of their abundance before and during AD could provide important insights. A$\$-CD4see is a new assay developed to quantify A$\$-specific CD4(+) T cells in human blood,using dendritic cells derived from human pluripotent stem cells. In tests of textgreater50 human subjects A$\$-CD4see showed an age-dependent decline of A$\$-specific CD4(+) T cells,which occurs earlier in women than men. In aggregate,men showed a 50% decline in these cells by the age of 70 years,but women reached the same level before the age of 60 years. Notably,women who carried the AD risk marker apolipoproteinE-ɛ4 (ApoE4) showed the earliest decline,with a precipitous drop between 45 and 52 years,when menopause typically begins. A$\$-CD4see requires a standard blood draw and provides a minimally invasive approach for assessing changes in A$\$ that may reveal AD-related changes in physiology by a decade. Furthermore,CD4see probes can be modified to target any peptide,providing a powerful new tool to isolate antigen-specific CD4(+) T cells from human subjects.
View Publication