Cryopreservation of human pluripotent stem cells: a general protocol.
Cryopreservation is an essential technique to preserve stem cells,semipermanently sustaining their potentials. There are two main approaches of cryopreservation for human pluripotent stem cells (hPSCs). The first is the vitrification,which involves instantaneous freeze and thaw of hPSCs. The second is the conventional slow-cooling method and a rapid thaw. Both cryopreservation protocols have been standardized and optimized to yield high survivability of hPSCs.
View Publication
Baatz JE et al. (JUL 2014)
In vivo (Athens,Greece) 28 4 411--423
Cryopreservation of viable human lung tissue for versatile post-thaw analyses and culture.
Clinical trials are currently used to test therapeutic efficacies for lung cancer,infections and diseases. Animal models are also used as surrogates for human disease. Both approaches are expensive and time-consuming. The utility of human biospecimens as models is limited by specialized tissue processing methods that preserve subclasses of analytes (e.g. RNA,protein,morphology) at the expense of others. We present a rapid and reproducible method for the cryopreservation of viable lung tissue from patients undergoing lobectomy or transplant. This method involves the pseudo-diaphragmatic expansion of pieces of fresh lung tissue with cryoprotectant formulation (pseudo-diaphragmatic expansion-cryoprotectant perfusion or PDX-CP) followed by controlled-rate freezing in cryovials. Expansion-perfusion rates,volumes and cryoprotectant formulation were optimized to maintain tissue architecture,decrease crystal formation and increase long-term cell viability. Rates of expansion of 4 cc/min or less and volumes ranging from 0.8-1.2 × tissue volume were well-tolerated by lung tissue obtained from patients with chronic obstructive pulmonary disease or idiopathic pulmonary fibrosis,showing minimal differences compared to standard histopathology. Morphology was greatly improved by the PDX-CP procedure compared to simple fixation. Fresh versus post-thawed lung tissue showed minimal differences in histology,RNA integrity numbers and post-translational modified protein integrity (2-dimensional differential gel electrophoresis). It was possible to derive numerous cell types,including alveolar epithelial cells,fibroblasts and stem cells,from the tissue for at least three months after cryopreservation. This new method should provide a uniform,cost-effective approach to the banking of biospecimens,with versatility to be amenable to any post-acquisition process applicable to fresh tissue samples.
View Publication
Nath SC et al. (SEP 2016)
Bioprocess and biosystems engineering
Culture medium refinement by dialysis for the expansion of human induced pluripotent stem cells in suspension culture.
Human induced pluripotent stem cells (hiPSCs) secrete essential autocrine factors that are removed along with toxic metabolites when the growth medium is exchanged daily. In this study,after determining the minimum inhibitory level of lactic acid for hiPSCs,a medium refining system was constructed by which toxic metabolites were removed from used culture medium and autocrine factors as well as other growth factors were recycled. Specifically,about 87 % of the basic fibroblast growth factor and 80 % of transforming growth factor beta 1 were retained in the refined medium after dialysis. The refined medium efficiently potentiated the proliferation of hiPS cells in adherent culture. When the refining system was used to refresh medium in suspension culture,a final cell density of (1.1 ± 0.1) × 10(6) cells mL(-1) was obtained,with 99.5 ± 0.2 % OCT 3/4 and 78.3 ± 1.1 % TRA-1-60 expression,on day 4 of culture. These levels of expression were similar to those observed in the conventional suspension culture. With this method,culture medium refinement by dialysis was established to remove toxic metabolites,recycle autocrine factors as well as other growth factors,and reduce the use of macromolecules for the expansion of hiPSCs in suspension culture.
View Publication
Nagaoka M et al. (JAN 2010)
BMC developmental biology 10 60
Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum.
BACKGROUND: To maintain pluripotency of human embryonic stem (huES) cells in feeder-free culture it has been necessary to provide a Matrigel substratum,which is a complex of poorly defined extracellular matrices and growth factors derived from mouse Engelbreth-Holm-Swarm sarcoma cells. Culture of stem cells under ill-defined conditions can inhibit the effectiveness of maintaining cells in a pluripotent state and reduce reproducibility of differentiation protocols. Moreover recent batches of Matrigel have been found to be contaminated with the single stranded RNA virus,Lactate Dehydrogenase Elevating Virus (LDEV),raising concerns regarding the safety of using stem cells that have been cultured on Matrigel in a therapeutic setting. To circumvent such concerns,we attempted to identify a recombinant matrix that could be used as an alternative to Matrigel for the culture of human pluripotent stem cells. huES and human induced pluripotent stem (hiPS) cells were grown on plates coated with a fusion protein consisting of E-cadherin and the IgG Fc domain using mTeSR1 medium.backslashnbackslashnRESULTS: Cells grown under these conditions maintained similar morphology and growth rate to those grown on Matrigel and retained all pluripotent stem cell features,including an ability to differentiate into multiple cell lineages in teratoma assays. We,therefore,present a culture system that maintains the pluripotency of huES and hiPS cells under completely defined conditions.backslashnbackslashnCONCLUSIONS: We propose that this system should facilitate growth of stem cells using good manufacturing practices (GMP),which will be necessary for the clinical use of pluripotent stem cells and their derivatives.
View Publication
Philonenko ES et al. (JAN 2011)
International review of cell and molecular biology 292 153--96
Current progress and potential practical application for human pluripotent stem cells.
Pluripotent stem cells are able to give rise to all cell types of the organism. There are two sources for human pluripotent stem cells: embryonic stem cells (ESCs) derived from surplus blastocysts created for in vitro fertilization and induced pluripotent stem cells (iPSCs) generated by reprogramming of somatic cells. ESCs have been an area of intense research during the past decade,and two clinical trials have been recently approved. iPSCs were created only recently,and most of the research has been focused on the iPSC generation protocols and investigation of mechanisms of direct reprogramming. The iPSC technology makes possible to derive pluripotent stem cells from any patient. However,there are a number of hurdles to be overcome before iPSCs will find a niche in practice. In this review,we discuss differences and similarities of the two pluripotent cell types and assess prospects for application of these cells in biomedicine.
View Publication
Jung J-H et al. (APR 2015)
Stem cells and development 24 8 948--61
CXCR2 and its related ligands play a novel role in supporting the pluripotency and proliferation of human pluripotent stem cells.
Basic fibroblast growth factor (bFGF) is a crucial factor sustaining human pluripotent stem cells (hPSCs). We designed this study to search the substitutive factors other than bFGF for the maintenance of hPSCs by using human placenta-derived conditioned medium without exogenous bFGF (hPCCM-),containing chemokine (C-X-C motif) receptor 2 (CXCR2) ligands,including interleukin (IL)-8 and growth-related oncogene $\$(GRO$\$),which were developed on the basis of our previous studies. First,we confirmed that IL-8 and/or GRO$\$ independent roles to preserve the phenotype of hPSCs. Then,we tried CXCR2 blockage of hPSCs in hPCCM- and verified the significant decrease of pluripotency-associated genes expression and the proliferation of hPSCs. Interestingly,CXCR2 suppression of hPSCs in mTeSR™1 containing exogenous bFGF decreased the proliferation of hPSCs while maintaining pluripotency characteristics. Lastly,we found that hPSCs proliferated robustly for more than 35 passages in hPCCM- on a gelatin substratum. Higher CXCR2 expression of hPSCs cultured in hPCCM- than those in mTeSR™1 was observable. Our findings suggest that CXCR2 and its related ligands might be novel factors comparable to bFGF supporting the characteristics of hPSCs and hPCCM- might be useful for the maintenance of hPSCs as well as for the accurate evaluation of CXCR2 role in hPSCs without the confounding influence of exogenous bFGF.
View Publication
Jung J-H et al. (MAY 2016)
Stem cells and development
CXCR2 Inhibition in Human Pluripotent Stem Cells Induces Predominant Differentiation to Mesoderm and Endoderm through Repression of mTOR, beta-catenin, and hTERT Activities.
On the basis of our previous report verifying that CXCR2 ligands in human placenta-conditioned medium (hPCCM) support human pluripotent stem cell (hPSC) propagation without exogenous bFGF,this study was designed to identify the effect of CXCR2 manipulation on the fate of hPSCs and the underlying mechanism,which had not been previously determined. We observed that CXCR2 inhibition in hPSCs induces predominant differentiation to mesoderm and endoderm with concomitant loss of hPSC characteristics and accompanying decreased expression of mTOR,beta-catenin,and hTERT. These phenomena are recapitulated in hPSCs propagated in conventional culture conditions including bFGF as well as those in hPCCM without exogenous bFGF,suggesting that the action of CXCR2 on hPSCs might not be associated with a bFGF-related mechanism. In addition,the specific CXCR2 ligand GROalpha markedly increased the expression of ectodermal markers in differentiation-committed embryoid bodies derived from hPSCs. This finding suggests that CXCR2 inhibition in hPSCs prohibits the propagation of hPSCs and leads to predominant differentiation to mesoderm and endoderm owing to the blockage of ectodermal differentiation. Taken together,our results indicate that CXCR2 preferentially supports the maintenance of hPSC characteristics as well as facilitates ectodermal differentiation after the commitment to differentiation,and that the mechanism might be associated with mTOR,beta-catenin,and hTERT activities.
View Publication
Zhang L et al. (NOV 2016)
Neuroscience 337 88--97
CXCR4 activation promotes differentiation of human embryonic stem cells to neural stem cells.
G protein-coupled receptors (GPCRs) are involved in many fundamental cellular responses such as growth,death,movement,transcription and excitation. Their roles in human stem cell neural specialization are not well understood. In this study,we aimed to identify GPCRs that may play a role in the differentiation of human embryonic stem cells (hESCs) to neural stem cells (NSCs). Using a feeder-free hESC neural differentiation protocol,we found that the expression of several chemokine receptors changed dramatically during the hESC/NSC transition. Especially,the expression of CXCR4 increased approximately 50 folds in NSCs compared to the original hESCs. CXCR4 agonist SDF-1 promoted,whereas the antagonist AMD3100 delayed the neural induction process. In consistence with antagonizing CXCR4,knockdown of CXCR4 in hESCs also blocked the neural induction and cells with reduced CXCR4 were rarely positive for Nestin and Sox1-staining. Taken together,our results suggest that CXCR4 is involved in the neural induction process of hESC and it might be considered as a target to facilitate NSC production from hESCs in regenerative medicine.
View Publication
Cipriano AF et al. (JAN 2017)
Acta biomaterialia 48 499--520
Cytocompatibility and early inflammatory response of human endothelial cells in direct culture with Mg-Zn-Sr alloys.
Crystalline Mg-Zinc (Zn)-Strontium (Sr) ternary alloys consist of elements naturally present in the human body and provide attractive mechanical and biodegradable properties for a variety of biomedical applications. The first objective of this study was to investigate the degradation and cytocompatibility of four Mg-4Zn-xSr alloys (x=0.15,0.5,1.0,1.5wt%; designated as ZSr41A,B,C,and D respectively) in the direct culture with human umbilical vein endothelial cells (HUVEC) in vitro. The second objective was to investigate,for the first time,the early-stage inflammatory response in cultured HUVECs as indicated by the induction of vascular cellular adhesion molecule-1 (VCAM-1). The results showed that the 24-h in vitro degradation of the ZSr41 alloys containing a β-phase with a Zn/Sr at% ratio ∼1.5 was significantly faster than the ZSr41 alloys with Zn/Sr at% ∼1. Additionally,the adhesion density of HUVECs in the direct culture but not in direct contact with the ZSr41 alloys for up to 24h was not adversely affected by the degradation of the alloys. Importantly,neither culture media supplemented with up to 27.6mM Mg(2+) ions nor media intentionally adjusted up to alkaline pH 9 induced any detectable adverse effects on HUVEC responses. In contrast,the significantly higher,yet non-cytotoxic,Zn(2+) ion concentration from the degradation of ZSr41D alloy was likely the cause for the initially higher VCAM-1 expression on cultured HUVECs. Lastly,analysis of the HUVEC-ZSr41 interface showed near-complete absence of cell adhesion directly on the sample surface,most likely caused by either a high local alkalinity,change in surface topography,and/or surface composition. The direct culture method used in this study was proposed as a valuable tool for studying the design aspects of Zn-containing Mg-based biomaterials in vitro,in order to engineer solutions to address current shortcomings of Mg alloys for vascular device applications. STATEMENT OF SIGNIFICANCE Magnesium (Mg) alloys specifically designed for biodegradable implant applications have been the focus of biomedical research since the early 2000s. Physicochemical properties of Mg alloys make these metallic biomaterials excellent candidates for temporary biodegradable implants in orthopedic and cardiovascular applications. As Mg alloys continue to be investigated for biomedical applications,it is necessary to understand whether Mg-based materials or the alloying elements have the intrinsic ability to direct an immune response to improve implant integration while avoiding cell-biomaterial interactions leading to chronic inflammation and/or foreign body reactions. The present study utilized the direct culture method to investigate for the first time the in vitro transient inflammatory activation of endothelial cells induced by the degradation products of Zn-containing Mg alloys.
View Publication
Galat Y et al. (MAR 2017)
Stem cell research & therapy 8 1 67
Cytokine-free directed differentiation of human pluripotent stem cells efficiently produces hemogenic endothelium with lymphoid potential.
BACKGROUND The robust generation of human hematopoietic progenitor cells from induced or embryonic pluripotent stem cells would be beneficial for multiple areas of research,including mechanistic studies of hematopoiesis,the development of cellular therapies for autoimmune diseases,induced transplant tolerance,anticancer immunotherapies,disease modeling,and drug/toxicity screening. Over the past years,significant progress has been made in identifying effective protocols for hematopoietic differentiation from pluripotent stem cells and understanding stages of mesodermal,endothelial,and hematopoietic specification. Thus,it has been shown that variations in cytokine and inhibitory molecule treatments in the first few days of hematopoietic differentiation define primitive versus definitive potential of produced hematopoietic progenitor cells. The majority of current feeder-free,defined systems for hematopoietic induction from pluripotent stem cells include prolonged incubations with various cytokines that make the differentiation process complex and time consuming. We established that the application of Wnt agonist CHIR99021 efficiently promotes differentiation of human pluripotent stem cells in the absence of any hematopoietic cytokines to the stage of hemogenic endothelium capable of definitive hematopoiesis. METHODS The hemogenic endothelium differentiation was accomplished in an adherent,serum-free culture system by applying CHIR99021. Hemogenic endothelium progenitor cells were isolated on day 5 of differentiation and evaluated for their endothelial,myeloid,and lymphoid potential. RESULTS Monolayer induction based on GSK3 inhibition,described here,yielded a large number of CD31(+)CD34(+) hemogenic endothelium cells. When isolated and propagated in adherent conditions,these progenitors gave rise to mature endothelium. When further cocultured with OP9 mouse stromal cells,these progenitors gave rise to various cells of myeloid lineages as well as natural killer lymphoid,T-lymphoid,and B-lymphoid cells. CONCLUSION The results of this study substantiate a method that significantly reduces the complexity of current protocols for hematopoietic induction,offers a defined system to study the factors that affect the early stages of hematopoiesis,and provides a new route of lymphoid and myeloid cell derivation from human pluripotent stem cells,thus enhancing their use in translational medicine.
View Publication