Bagutti C et al. (OCT 1996)
Developmental biology 179 1 184--96
Differentiation of embryonal stem cells into keratinocytes: comparison of wild-type and beta 1 integrin-deficient cells.
beta 1 Integrins are known to regulate terminal differentiation and morphogenesis in the adult epidermis. We have investigated their role in the embryonic development of keratinocytes by comparing the differentiation of wild-type and beta 1-null mouse embryonal stem (ES) cells. By 12-15 days in culture,differentiation of embryonic or simple epithelial cells occurred in both ES cell populations,as detected by expression of keratins 8,18,and 19. From 21 days,expression of keratins 10 and 14 and of the cornified envelope precursor involucrin indicated that some of the wild-type cells had differentiated into keratinocytes. In contrast,keratinocyte markers were not expressed in beta 1-null cultures. The beta 1-null cells failed to express the alpha 2 and alpha 3 integrin subunits on the cell surface,consistent with the association of these a subunits with beta 1. Furthermore,alpha 6 and beta 4 expression was reduced in the beta 1-null cultures. Although beta 1-null ES cells failed to undergo differentiation into keratinocytes in vitro,they did form keratinocyte cysts expressing alpha 6 beta 4,keratins 1 and 14,and involucrin when allowed to form teratomas by subcutaneous injection in mice; furthermore,beta 1-null keratinocytes were found in the epidermis of a wild-type/beta 1-null chimeric mouse. As judged by immunofluorescence microscopy,extracellular matrix assembly was severely impaired in beta 1-null ES cell cultures,but not in the teratomas or chimeric mouse skin. We therefore speculate that the failure of beta 1-null cells to differentiate into keratinocytes in vitro may reflect an inability to assemble a basement membrane.
View Publication
Dani C et al. (JUN 1997)
Journal of cell science 110 ( Pt 1 1279--85
Differentiation of embryonic stem cells into adipocytes in vitro.
Embryonic stem cells,derived from the inner cell mass of murine blastocysts,can be maintained in a totipotent state in vitro. In appropriate conditions embryonic stem cells have been shown to differentiate in vitro into various derivatives of all three primary germ layers. We describe in this paper conditions to induce differentiation of embryonic stem cells reliably and at high efficiency into adipocytes. A prerequisite is to treat early developing embryonic stem cell-derived embryoid bodies with retinoic acid for a precise period of time. Retinoic acid could not be substituted by adipogenic hormones nor by potent activators of peroxisome proliferator-activated receptors. Treatment with retinoic acid resulted in the subsequent appearance of large clusters of mature adipocytes in embryoid body outgrowths. Lipogenic and lipolytic activities as well as high level expression of adipocyte specific genes could be detected in these cultures. Analysis of expression of potential adipogenic genes,such as peroxisome proliferator-activated receptors gamma and delta and CCAAT/enhancer binding protein beta,during differentiation of retinoic acid-treated embryoid bodies has been performed. The temporal pattern of expression of genes encoding these nuclear factors resembled that found during mouse embryogenesis. The differentiation of embryonic stem cells into adipocytes will provide an invaluable model for the characterisation of the role of genes expressed during the adipocyte development programme and for the identification of new adipogenic regulatory genes.
View Publication
Lumelsky N et al. (MAY 2001)
Science (New York,N.Y.) 292 5520 1389--94
Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets.
Although the source of embryonic stem (ES) cells presents ethical concerns,their use may lead to many clinical benefits if differentiated cell types can be derived from them and used to assemble functional organs. In pancreas,insulin is produced and secreted by specialized structures,islets of Langerhans. Diabetes,which affects 16 million people in the United States,results from abnormal function of pancreatic islets. We have generated cells expressing insulin and other pancreatic endocrine hormones from mouse ES cells. The cells self-assemble to form three-dimensional clusters similar in topology to normal pancreatic islets where pancreatic cell types are in close association with neurons. Glucose triggers insulin release from these cell clusters by mechanisms similar to those employed in vivo. When injected into diabetic mice,the insulin-producing cells undergo rapid vascularization and maintain a clustered,islet-like organization.
View Publication
Mallanna SK and Duncan SA ( 2013)
26 SUPPL.26 Unit 1G.4.
Differentiation of hepatocytes from pluripotent stem cells.
Differentiation of human embryonic stem (ES) and induced pluripotent stem (iPS) cells into hepatocyte-like cells provides a platform to study the molecular basis of human hepatocyte differentiation,to develop cell culture models of liver disease,and to potentially provide hepatocytes for treatment of end-stage liver disease. Additionally,hepatocyte-like cells generated from human pluripotent stem cells could serve as platforms for drug discovery,determination of pharmaceutical-induced hepatotoxicity,and evaluation of idiosyncratic drug-drug interactions. Here,we describe a step-wise protocol previously developed in our laboratory that facilitates the highly efficient and reproducible differentiation of human pluripotent stem cells into hepatocyte-like cells. Our protocol uses defined culture conditions and closely recapitulates key developmental events that are found to occur during hepatogenesis.
View Publication
Differentiation of Human Embryonic Stem Cells into Cells with Corneal Keratocyte Phenotype
Corneal transparency depends on a unique extracellular matrix secreted by stromal keratocytes,mesenchymal cells of neural crest lineage. Derivation of keratocytes from human embryonic stem (hES) cells could elucidate the keratocyte developmental pathway and open a potential for cell-based therapy for corneal blindness. This study seeks to identify conditions inducing differentiation of pluripotent hES cells to the keratocyte lineage. Neural differentiation of hES cell line WA01(H1) was induced by co-culture with mouse PA6 fibroblasts. After 6 days of co-culture,hES cells expressing cell-surface NGFR protein (CD271,p75NTR) were isolated by immunoaffinity adsorption,and cultured as a monolayer for one week. Keratocyte phenotype was induced by substratum-independent pellet culture in serum-free medium containing ascorbate. Gene expression,examined by quantitative RT-PCR,found hES cells co-cultured with PA6 cells for 6 days to upregulate expression of neural crest genes including NGFR,SNAI1,NTRK3,SOX9,and MSX1. Isolated NGFR-expressing cells were free of PA6 feeder cells. After expansion as a monolayer,mRNAs typifying adult stromal stem cells were detected,including BMI1,KIT,NES,NOTCH1,and SIX2. When these cells were cultured as substratum-free pellets keratocyte markers AQP1,B3GNT7,PTDGS,and ALDH3A1 were upregulated. mRNA for keratocan (KERA),a cornea-specific proteoglycan,was upregulated more than 10,000 fold. Culture medium from pellets contained high molecular weight keratocan modified with keratan sulfate,a unique molecular component of corneal stroma. These results show hES cells can be induced to differentiate into keratocytes in vitro. Pluripotent stem cells,therefore,may provide a renewable source of material for development of treatment of corneal stromal opacities.
View Publication
Erceg S et al. (MAY 2008)
PLoS ONE 3 5 e2122
Differentiation of human embryonic stem cells to regional specific neural precursors in chemically defined medium conditions.
BACKGROUND: Human embryonic stem cells (hESC) provide a unique model to study early events in human development. The hESC-derived cells can potentially be used to replace or restore different tissues including neuronal that have been damaged by disease or injury.backslashnbackslashnMETHODOLOGY AND PRINCIPAL FINDINGS: The cells of two different hESC lines were converted to neural rosettes using adherent and chemically defined conditions. The progenitor cells were exposed to retinoic acid (RA) or to human recombinant basic fibroblast growth factor (bFGF) in the late phase of the rosette formation. Exposing the progenitor cells to RA suppressed differentiation to rostral forebrain dopamine neural lineage and promoted that of spinal neural tissue including motor neurons. The functional characteristics of these differentiated neuronal precursors under both,rostral (bFGF) and caudalizing (RA) signals were confirmed by patch clamp analysis.backslashnbackslashnCONCLUSIONS/SIGNIFICANCE: These findings suggest that our differentiation protocol has the capacity to generate region-specific and electrophysiologically active neurons under in vitro conditions without embryoid body formation,co-culture with stromal cells and without presence of cells of mesodermal or endodermal lineages.
View Publication
Qu Y et al. (FEB 2017)
Stem cell reports 8 2 205--215
Differentiation of Human Induced Pluripotent Stem Cells to Mammary-like Organoids.
Human induced pluripotent stem cells (iPSCs) can give rise to multiple cell types and hold great promise in regenerative medicine and disease-modeling applications. We have developed a reliable two-step protocol to generate human mammary-like organoids from iPSCs. Non-neural ectoderm-cell-containing spheres,referred to as mEBs,were first differentiated and enriched from iPSCs using MammoCult medium. Gene expression profile analysis suggested that mammary gland function-associated signaling pathways were hallmarks of 10-day differentiated mEBs. We then generated mammary-like organoids from 10-day mEBs using 3D floating mixed gel culture and a three-stage differentiation procedure. These organoids expressed common breast tissue,luminal,and basal markers,including estrogen receptor,and could be induced to produce milk protein. These results demonstrate that human iPSCs can be directed in vitro toward mammary lineage differentiation. Our findings provide an iPSC-based model for studying regulation of normal mammary cell fate and function as well as breast disease development.
View Publication
Wang S et al. (MAR 2015)
Sci Rep 5 9232
Differentiation of human induced pluripotent stem cells to mature functional Purkinje neurons.
It remains a challenge to differentiate human induced pluripotent stem cells (iPSCs) or embryonic stem (ES) cells to Purkinje cells. In this study,we derived iPSCs from human fibroblasts and directed the specification of iPSCs first to Purkinje progenitors,by adding Fgf2 and insulin to the embryoid bodies (EBs) in a time-sensitive manner,which activates the endogenous production of Wnt1 and Fgf8 from EBs that further patterned the cells towards a midbrain-hindbrain-boundary tissue identity. Neph3-positive human Purkinje progenitors were sorted out by using flow cytometry and cultured either alone or with granule cell precursors,in a 2-dimensional or 3-dimensional environment. However,Purkinje progenitors failed to mature further under above conditions. By co-culturing human Purkinje progenitors with rat cerebellar slices,we observed mature Purkinje-like cells with right morphology and marker expression patterns,which yet showed no appropriate membrane properties. Co-culture with human fetal cerebellar slices drove the progenitors to not only morphologically correct but also electrophysiologically functional Purkinje neurons. Neph3-posotive human cells could also survive transplantation into the cerebellum of newborn immunodeficient mice and differentiate to L7- and Calbindin-positive neurons. Obtaining mature human Purkinje cells in vitro has significant implications in studying the mechanisms of spinocerebellar ataxias and other cerebellar diseases.
View Publication
Kang M and Han Y-M (APR 2014)
PloS one 9 4 e94888
Differentiation of human pluripotent stem cells into nephron progenitor cells in a serum and feeder free system.
OBJECTIVES Kidney disease is emerging as a critical medical problem worldwide. Because of limited treatment options for the damaged kidney,stem cell treatment is becoming an alternative therapeutic approach. Of many possible human stem cell sources,pluripotent stem cells are most attractive due to their self-renewal and pluripotent capacity. However,little is known about the derivation of renal lineage cells from human pluripotent stem cells (hPSCs). In this study,we developed a novel protocol for differentiation of nephron progenitor cells (NPCs) from hPSCs in a serum- and feeder-free system. MATERIALS AND METHODS We designed step-wise protocols for differentiation of human pluripotent stem cells toward primitive streak,intermediate mesoderm and NPCs by recapitulating normal nephrogenesis. Expression of key marker genes was examined by RT-PCR,real time RT-PCR and immunocytochemistry. Each experiment was independently performed three times to confirm its reproducibility. RESULTS After modification of culture period and concentration of exogenous factors,hPSCs can differentiate into NPCs that markedly express specific marker genes such as SIX2,GDNF,HOXD11,WT1 and CITED1 in addition to OSR1,PAX2,SALL1 and EYA1. Moreover,NPCs possess the potential of bidirectional differentiation into both renal tubular epithelial cells and glomerular podocytes in defined culture conditions. In particular,approximately 70% of SYN-positive cells were obtained from hPSC-derived NPCs after podocytes induction. NPCs can also form in vitro tubule-like structures in three dimensional culture systems. CONCLUSIONS Our novel protocol for hPSCs differentiation into NPCs can be useful for producing alternative sources of cell replacement therapy and disease modeling for human kidney diseases.
View Publication
van den Berg CW et al. ( 2016)
1353 1341 163--80
Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes Under Defined Conditions.
Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) can differentiate to cardiomyocytes in vitro,offering unique opportunities to investigate cardiac development and disease as well as providing a platform to perform drug and toxicity tests. Initial cardiac differentiation methods were based on either inductive co-culture or aggregation as embryoid bodies,often in the presence of fetal calf serum. More recently,monolayer differentiation protocols have evolved as feasible alternatives and are often performed in completely defined culture medium and substrates. Thus,our ability to efficiently and reproducibly generate cardiomyocytes from multiple different hESC and hiPSC lines has improved significantly.We have developed a directed differentiation monolayer protocol that can be used to generate cultures comprising ˜50% cardiomyocytes,in which both the culture of the undifferentiated human pluripotent stem cells (hPSCs) and the differentiation procedure itself are defined and serum-free. The differentiation method is also effective for hPSCs maintained in other culture systems. In this chapter,we outline the differentiation protocol and describe methods to assess cardiac differentiation efficiency as well as to identify and quantify the yield of cardiomyocytes.
View Publication
Prasain N et al. (NOV 2014)
Nature biotechnology 32 11 1151--1157
Differentiation of human pluripotent stem cells to cells similar to cord-blood endothelial colony-forming cells.
The ability to differentiate human pluripotent stem cells into endothelial cells with properties of cord-blood endothelial colony-forming cells (CB-ECFCs) may enable the derivation of clinically relevant numbers of highly proliferative blood vessel-forming cells to restore endothelial function in patients with vascular disease. We describe a protocol to convert human induced pluripotent stem cells (hiPSCs) or embryonic stem cells (hESCs) into cells similar to CB-ECFCs at an efficiency of textgreater10(8) ECFCs produced from each starting pluripotent stem cell. The CB-ECFC-like cells display a stable endothelial phenotype with high clonal proliferative potential and the capacity to form human vessels in mice and to repair the ischemic mouse retina and limb,and they lack teratoma formation potential. We identify Neuropilin-1 (NRP-1)-mediated activation of KDR signaling through VEGF165 as a critical mechanism for the emergence and maintenance of CB-ECFC-like cells.
View Publication