Li H et al. (SEP 2016)
In vitro cellular & developmental biology. Animal 52 8 885--893
Directed differentiation of human embryonic stem cells into keratinocyte progenitors in vitro: an attempt with promise of clinical use.
Human embryonic stem cells (hESCs) can differentiate into all somatic lineages including stratified squamous epithelia. Thus,efficient methods are required to direct hESC differentiation to obtain a pure subpopulation for tissue engineering. The study aimed to assess the effects of retinoic acid (RA),bone morphogenetic protein-4 (BMP4),and ascorbic acid (AA) on the differentiation of hESCs into keratinocyte progenitors in vitro. The first media contained AA and BMP4; the second contained RA,AA,and BMP4; the third was commercial-defined keratinocyte serum-free medium,which was used to differentiate H9 hESCs (direct approach) or embryoid bodies (EBs) (indirect approach) into keratinocyte progenitors. Real-time RT-PCR,immunofluorescence,and flow-cytometry were used to characterize the differentiated cells. Cells induced by AA + BMP4 + RA showed the typical epithelial morphology,while cells induced by AA + BMP4 showed multiple appearances. CK14 and p63 messenger RNA (mRNA) expressions in the AA + BMP4 + RA-treated cells were higher than those of the AA + BMP4-treated cells (CK14: 22.4-fold; p63: 84.7-fold). Epithelial marker CK18 mRNA expressions at 14 d of differentiation and keratinocyte marker CK14 and transcription factor p63 mRNA expressions at 35 d of differentiation were higher in cells differentiated from hESCs compared with those differentiated from EBs (CK18 10.51 ± 3.26 vs. 6.67 ± 1.28; CK14 9.27 ± 3.61 vs. 5.32 ± 1.86; p63 0.73 ± 0.06 vs. 0.44 ± 0.12,all P textless 0.05) After hESC induction by AA+BMP4+RA,CK14 mRNA expression was upregulated after day 21,peaking by 35 d of differentiation. Combined RA,BMP4,and AA could effectively induce differentiation of hESCs into keratinocyte progenitors in vitro. These keratinocytes could be used for oral mucosa and skin tissue engineering.
View Publication
Dixon JE et al. (SEP 2011)
Molecular therapy : the journal of the American Society of Gene Therapy 19 9 1695--703
Directed differentiation of human embryonic stem cells to interrogate the cardiac gene regulatory network.
The limited ability of the heart to regenerate has prompted development of new systems to produce cardiomyocytes for therapeutics. While differentiation of human embryonic stem cells (hESCs) into cardiomyocytes has been well documented,the process remains inefficient and/or expensive,and progress would be facilitated by better understanding the early genetic events that cause cardiac specification. By maintaining a transgenic cardiac-specific MYH6-monomeric red fluorescent protein (mRFP) reporter hESC line in conditions that promote pluripotency,we tested the ability of combinations of 15 genes to induce cardiac specification. Screening identified GATA4 plus TBX5 as the minimum requirement to activate the cardiac gene regulatory network and produce mRFP(+) cells,while a combination of GATA4,TBX5,NKX2.5,and BAF60c (GTNB) was necessary to generate beating cardiomyocytes positive for cTnI and α-actinin. Including the chemotherapeutic agent,Ara-C,from day 10 of induced differentiation enriched for cTnI/α-actinin double positive cells to 45%. Transient expression of GTNB for 5-7 days was necessary to activate the cardiogenesis through progenitor intermediates in a manner consistent with normal heart development. This system provides a route to test the effect of different factors on human cardiac differentiation and will be useful in understanding the network failures that underlie disease phenotypes.
View Publication
Matsuoka AJ et al. (MAR 2017)
Stem cells translational medicine 6 3 923--936
Directed Differentiation of Human Embryonic Stem Cells Toward Placode-Derived Spiral Ganglion-Like Sensory Neurons.
The ability to generate spiral ganglion neurons (SGNs) from stem cells is a necessary prerequisite for development of cell-replacement therapies for sensorineural hearing loss. We present a protocol that directs human embryonic stem cells (hESCs) toward a purified population of otic neuronal progenitors (ONPs) and SGN-like cells. Between 82% and 95% of these cells express SGN molecular markers,they preferentially extend neurites to the cochlear nucleus rather than nonauditory nuclei,and they generate action potentials. The protocol follows an in vitro stepwise recapitulation of developmental events inherent to normal differentiation of hESCs into SGNs,resulting in efficient sequential generation of nonneuronal ectoderm,preplacodal ectoderm,early prosensory ONPs,late ONPs,and cells with cellular and molecular characteristics of human SGNs. We thus describe the sequential signaling pathways that generate the early and later lineage species in the human SGN lineage,thereby better describing key developmental processes. The results indicate that our protocol generates cells that closely replicate the phenotypic characteristics of human SGNs,advancing the process of guiding hESCs to states serving inner-ear cell-replacement therapies and possible next-generation hybrid auditory prostheses. textcopyright Stem Cells Translational Medicine 2017;6:923-936.
View Publication
Xia Y et al. (DEC 2013)
Nature Cell Biology 15 12 1507--1515
Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells
Diseases affecting the kidney constitute a major health issue worldwide. Their incidence and poor prognosis affirm the urgent need for the development of new therapeutic strategies. Recently,differentiation of pluripotent cells to somatic lineages has emerged as a promising approach for disease modelling and cell transplantation. Unfortunately,differentiation of pluripotent cells into renal lineages has demonstrated limited success. Here we report on the differentiation of human pluripotent cells into ureteric-bud-committed renal progenitor-like cells. The generated cells demonstrated rapid and specific expression of renal progenitor markers on 4-day exposure to defined media conditions. Further maturation into ureteric bud structures was accomplished on establishment of a three-dimensional culture system in which differentiated human cells assembled and integrated alongside murine cells for the formation of chimeric ureteric buds. Altogether,our results provide a new platform for the study of kidney diseases and lineage commitment,and open new avenues for the future application of regenerative strategies in the clinic.
View Publication
Spence JR et al. (FEB 2010)
Nature 470 7332 105--109
Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro
Studies in embryonic development have guided successful efforts to direct the differentiation of human embryonic and induced pluripotent stem cells (PSCs) into specific organ cell types in vitro. For example,human PSCs have been differentiated into monolayer cultures of liver hepatocytes and pancreatic endocrine cells that have therapeutic efficacy in animal models of liver disease and diabetes,respectively. However,the generation of complex three-dimensional organ tissues in vitro remains a major challenge for translational studies. Here we establish a robust and efficient process to direct the differentiation of human PSCs into intestinal tissue in vitro using a temporal series of growth factor manipulations to mimic embryonic intestinal development. This involved activin-induced definitive endoderm formation,FGF/Wnt-induced posterior endoderm pattering,hindgut specification and morphogenesis,and a pro-intestinal culture system to promote intestinal growth,morphogenesis and cytodifferentiation. The resulting three-dimensional intestinal 'organoids' consisted of a polarized,columnar epithelium that was patterned into villus-like structures and crypt-like proliferative zones that expressed intestinal stem cell markers. The epithelium contained functional enterocytes,as well as goblet,Paneth and enteroendocrine cells. Using this culture system as a model to study human intestinal development,we identified that the combined activity of WNT3A and FGF4 is required for hindgut specification whereas FGF4 alone is sufficient to promote hindgut morphogenesis. Our data indicate that human intestinal stem cells form de novo during development. We also determined that NEUROG3,a pro-endocrine transcription factor that is mutated in enteric anendocrinosis,is both necessary and sufficient for human enteroendocrine cell development in vitro. PSC-derived human intestinal tissue should allow for unprecedented studies of human intestinal development and disease.
View Publication
Douvaras P et al. (MAY 2017)
Stem cell reports
Directed Differentiation of Human Pluripotent Stem Cells to Microglia.
Microglia,the immune cells of the brain,are crucial to proper development and maintenance of the CNS,and their involvement in numerous neurological disorders is increasingly being recognized. To improve our understanding of human microglial biology,we devised a chemically defined protocol to generate human microglia from pluripotent stem cells. Myeloid progenitors expressing CD14/CX3CR1 were generated within 30 days of differentiation from both embryonic and induced pluripotent stem cells (iPSCs). Further differentiation of the progenitors resulted in ramified microglia with highly motile processes,expressing typical microglial markers. Analyses of gene expression and cytokine release showed close similarities between iPSC-derived (iPSC-MG) and human primary microglia as well as clear distinctions from macrophages. iPSC-MG were able to phagocytose and responded to ADP by producing intracellular Ca(2+) transients,whereas macrophages lacked such response. The differentiation protocol was highly reproducible across several pluripotent stem cell lines.
View Publication
Directed Differentiation of Pluripotent Stem Cells to Functional Hepatocytes
Differentiation of human stem cells to hepatocytes is crucial for industrial applications as well as to develop new therapeutic strategies for liver disease. The protocol described here,using sequentially growth factors known to play a role in liver embryonic development,efficiently differentiates human embryonic stem cells (hESC) as well as human-induced pluripotent stem cells (hiPSC) to hepatocytes by directing them through defined embryonic intermediates,namely,mesendoderm/definitive endoderm and hepatoblast and hepatocyte phenotype. After 28 days,the final differentiated progeny is a mixture of cells,comprising cells with characteristics of hepatoblasts and a smaller cell fraction with morphological and phenotypical features of mature hepatocytes. An extensive functional characterization of the stem cell progeny should be used to confirm that differentiated cells display functional characteristics of mature hepatocytes including albumin secretion,glycogen storage,and several detoxifying functions such as urea production,bilirubin conjugation,glutathione S-transferase activity,cytochrome activity and drug transporter activity.
View Publication
Zhang P et al. (SEP 2014)
Journal of visualized experiments : JoVE 91 51737
Directed dopaminergic neuron differentiation from human pluripotent stem cells.
Dopaminergic (DA) neurons in the substantia nigra pars compacta (also known as A9 DA neurons) are the specific cell type that is lost in Parkinson's disease (PD). There is great interest in deriving A9 DA neurons from human pluripotent stem cells (hPSCs) for regenerative cell replacement therapy for PD. During neural development,A9 DA neurons originate from the floor plate (FP) precursors located at the ventral midline of the central nervous system. Here,we optimized the culture conditions for the stepwise differentiation of hPSCs to A9 DA neurons,which mimics embryonic DA neuron development. In our protocol,we first describe the efficient generation of FP precursor cells from hPSCs using a small molecule method,and then convert the FP cells to A9 DA neurons,which could be maintained in vitro for several months. This efficient,repeatable and controllable protocol works well in human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) from normal persons and PD patients,in which one could derive A9 DA neurons to perform in vitro disease modeling and drug screening and in vivo cell transplantation therapy for PD.
View Publication
Bao X et al. ( 2016)
Methods in molecular biology (Clifton,N.J.) 1481 183--196
Directed Endothelial Progenitor Differentiation from Human Pluripotent Stem Cells Via Wnt Activation Under Defined Conditions.
Efficient derivation of endothelial cells and their progenitors from human pluripotent stem cells (hPSCs) can facilitate studies of human vascular development,disease modeling,drug discovery,and cell-based therapy. Here we provide a detailed protocol for directing hPSCs to functional endothelial cells and their progenitors in a completely defined,growth factor- and serum-free system by temporal modulation of Wnt/$$-catenin signaling via small molecules. We demonstrate a 10-day,two-stage process that recapitulates endothelial cell development,in which hPSCs first differentiate to endothelial progenitors that then generate functional endothelial cells and smooth muscle cells. Methods to characterize endothelial cell identity and function are also described.
View Publication
Asuri P et al. (FEB 2012)
Molecular therapy : the journal of the American Society of Gene Therapy 20 2 329--38
Directed Evolution of Adeno-associated Virus for Enhanced Gene Delivery and Gene Targeting in Human Pluripotent Stem Cells
Efficient approaches for the precise genetic engineering of human pluripotent stem cells (hPSCs) can enhance both basic and applied stem cell research. Adeno- associated virus (AAV) vectors are of particular interest for their capacity to mediate efficient gene delivery to and gene targeting in various cells. However,natural AAV serotypes offer only modest transduction of human embryonic and induced pluripotent stem cells (hESCs and hiPSCs),which limits their utility for efficiently manipulating the hPSC genome. Directed evolution is a powerful means to generate viral vectors with novel capabilities,and we have applied this approach to create a novel AAV variant with high gene delivery efficiencies (˜50%) to hPSCs,which are importantly accompanied by a considerable increase in gene-targeting frequencies,up to 0.12%. While this level is likely sufficient for numerous applications,we also show that the gene-targeting efficiency mediated by an evolved AAV variant can be further enhanced (textgreater1%) in the presence of targeted double- stranded breaks (DSBs) generated by the co-delivery of artificial zinc finger nucleases (ZFNs). Thus,this study demonstrates that under appropriate selective pressures,AAV vectors can be created to mediate efficient gene targeting in hPSCs,alone or in the presence of ZFN- mediated double-stranded DNA breaks.
View Publication
Surmacz B et al. (SEP 2012)
Stem Cells 30 9 1875--84
Directing differentiation of human embryonic stem cells toward anterior neural ectoderm using small molecules
Based on knowledge of early embryo development,where anterior neural ectoderm (ANE) development is regulated by native inhibitors of bone morphogenic protein (BMP) and Nodal/Activin signaling,most published protocols of human embryonic stem cell differentiation to ANE have demonstrated a crucial role for Smad signaling in neural induction. The drawbacks of such protocols include the use of an embryoid body culture step and use of polypeptide secreted factors that are both expensive and,when considering clinical applications,have significant challenges in terms of good manufacturing practices compliancy. The use of small molecules to direct differentiation of pluripotent stem cells toward a specified lineage represents a powerful approach to generate specific cell types for further understanding of biological function,for understanding disease processes,for use in drug discovery,and finally for use in regenerative medicine. We therefore aimed to find controlled and reproducible animal-component-free differentiation conditions that would use only small molecules. Here,we demonstrate that pluripotent stem cells can be reproducibly and efficiently differentiated to PAX6(+) (a marker of neuroectoderm) and OCT4(-) (a marker of pluripotent stem cells) cells with the use of potent small inhibitors of the BMP and Activin/Nodal pathways,and in animal-component-free conditions,replacing the frequently used Noggin and SB431542. We also show by transcript analysis,both at the population level and for the first time at the single-cell level,that differentiated cells express genes characteristic for the development of ANE,in particular for the development of the future forebrain.
View Publication