Spence JR et al. (FEB 2010)
Nature 470 7332 105--109
Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro
Studies in embryonic development have guided successful efforts to direct the differentiation of human embryonic and induced pluripotent stem cells (PSCs) into specific organ cell types in vitro. For example,human PSCs have been differentiated into monolayer cultures of liver hepatocytes and pancreatic endocrine cells that have therapeutic efficacy in animal models of liver disease and diabetes,respectively. However,the generation of complex three-dimensional organ tissues in vitro remains a major challenge for translational studies. Here we establish a robust and efficient process to direct the differentiation of human PSCs into intestinal tissue in vitro using a temporal series of growth factor manipulations to mimic embryonic intestinal development. This involved activin-induced definitive endoderm formation,FGF/Wnt-induced posterior endoderm pattering,hindgut specification and morphogenesis,and a pro-intestinal culture system to promote intestinal growth,morphogenesis and cytodifferentiation. The resulting three-dimensional intestinal 'organoids' consisted of a polarized,columnar epithelium that was patterned into villus-like structures and crypt-like proliferative zones that expressed intestinal stem cell markers. The epithelium contained functional enterocytes,as well as goblet,Paneth and enteroendocrine cells. Using this culture system as a model to study human intestinal development,we identified that the combined activity of WNT3A and FGF4 is required for hindgut specification whereas FGF4 alone is sufficient to promote hindgut morphogenesis. Our data indicate that human intestinal stem cells form de novo during development. We also determined that NEUROG3,a pro-endocrine transcription factor that is mutated in enteric anendocrinosis,is both necessary and sufficient for human enteroendocrine cell development in vitro. PSC-derived human intestinal tissue should allow for unprecedented studies of human intestinal development and disease.
View Publication
Douvaras P et al. (MAY 2017)
Stem cell reports
Directed Differentiation of Human Pluripotent Stem Cells to Microglia.
Microglia,the immune cells of the brain,are crucial to proper development and maintenance of the CNS,and their involvement in numerous neurological disorders is increasingly being recognized. To improve our understanding of human microglial biology,we devised a chemically defined protocol to generate human microglia from pluripotent stem cells. Myeloid progenitors expressing CD14/CX3CR1 were generated within 30 days of differentiation from both embryonic and induced pluripotent stem cells (iPSCs). Further differentiation of the progenitors resulted in ramified microglia with highly motile processes,expressing typical microglial markers. Analyses of gene expression and cytokine release showed close similarities between iPSC-derived (iPSC-MG) and human primary microglia as well as clear distinctions from macrophages. iPSC-MG were able to phagocytose and responded to ADP by producing intracellular Ca(2+) transients,whereas macrophages lacked such response. The differentiation protocol was highly reproducible across several pluripotent stem cell lines.
View Publication
Directed Differentiation of Pluripotent Stem Cells to Functional Hepatocytes
Differentiation of human stem cells to hepatocytes is crucial for industrial applications as well as to develop new therapeutic strategies for liver disease. The protocol described here,using sequentially growth factors known to play a role in liver embryonic development,efficiently differentiates human embryonic stem cells (hESC) as well as human-induced pluripotent stem cells (hiPSC) to hepatocytes by directing them through defined embryonic intermediates,namely,mesendoderm/definitive endoderm and hepatoblast and hepatocyte phenotype. After 28 days,the final differentiated progeny is a mixture of cells,comprising cells with characteristics of hepatoblasts and a smaller cell fraction with morphological and phenotypical features of mature hepatocytes. An extensive functional characterization of the stem cell progeny should be used to confirm that differentiated cells display functional characteristics of mature hepatocytes including albumin secretion,glycogen storage,and several detoxifying functions such as urea production,bilirubin conjugation,glutathione S-transferase activity,cytochrome activity and drug transporter activity.
View Publication
Zhang P et al. (SEP 2014)
Journal of visualized experiments : JoVE 91 51737
Directed dopaminergic neuron differentiation from human pluripotent stem cells.
Dopaminergic (DA) neurons in the substantia nigra pars compacta (also known as A9 DA neurons) are the specific cell type that is lost in Parkinson's disease (PD). There is great interest in deriving A9 DA neurons from human pluripotent stem cells (hPSCs) for regenerative cell replacement therapy for PD. During neural development,A9 DA neurons originate from the floor plate (FP) precursors located at the ventral midline of the central nervous system. Here,we optimized the culture conditions for the stepwise differentiation of hPSCs to A9 DA neurons,which mimics embryonic DA neuron development. In our protocol,we first describe the efficient generation of FP precursor cells from hPSCs using a small molecule method,and then convert the FP cells to A9 DA neurons,which could be maintained in vitro for several months. This efficient,repeatable and controllable protocol works well in human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) from normal persons and PD patients,in which one could derive A9 DA neurons to perform in vitro disease modeling and drug screening and in vivo cell transplantation therapy for PD.
View Publication
Bao X et al. ( 2016)
Methods in molecular biology (Clifton,N.J.) 1481 183--196
Directed Endothelial Progenitor Differentiation from Human Pluripotent Stem Cells Via Wnt Activation Under Defined Conditions.
Efficient derivation of endothelial cells and their progenitors from human pluripotent stem cells (hPSCs) can facilitate studies of human vascular development,disease modeling,drug discovery,and cell-based therapy. Here we provide a detailed protocol for directing hPSCs to functional endothelial cells and their progenitors in a completely defined,growth factor- and serum-free system by temporal modulation of Wnt/$$-catenin signaling via small molecules. We demonstrate a 10-day,two-stage process that recapitulates endothelial cell development,in which hPSCs first differentiate to endothelial progenitors that then generate functional endothelial cells and smooth muscle cells. Methods to characterize endothelial cell identity and function are also described.
View Publication
Asuri P et al. (FEB 2012)
Molecular therapy : the journal of the American Society of Gene Therapy 20 2 329--38
Directed Evolution of Adeno-associated Virus for Enhanced Gene Delivery and Gene Targeting in Human Pluripotent Stem Cells
Efficient approaches for the precise genetic engineering of human pluripotent stem cells (hPSCs) can enhance both basic and applied stem cell research. Adeno- associated virus (AAV) vectors are of particular interest for their capacity to mediate efficient gene delivery to and gene targeting in various cells. However,natural AAV serotypes offer only modest transduction of human embryonic and induced pluripotent stem cells (hESCs and hiPSCs),which limits their utility for efficiently manipulating the hPSC genome. Directed evolution is a powerful means to generate viral vectors with novel capabilities,and we have applied this approach to create a novel AAV variant with high gene delivery efficiencies (˜50%) to hPSCs,which are importantly accompanied by a considerable increase in gene-targeting frequencies,up to 0.12%. While this level is likely sufficient for numerous applications,we also show that the gene-targeting efficiency mediated by an evolved AAV variant can be further enhanced (textgreater1%) in the presence of targeted double- stranded breaks (DSBs) generated by the co-delivery of artificial zinc finger nucleases (ZFNs). Thus,this study demonstrates that under appropriate selective pressures,AAV vectors can be created to mediate efficient gene targeting in hPSCs,alone or in the presence of ZFN- mediated double-stranded DNA breaks.
View Publication
Surmacz B et al. (SEP 2012)
Stem Cells 30 9 1875--84
Directing differentiation of human embryonic stem cells toward anterior neural ectoderm using small molecules
Based on knowledge of early embryo development,where anterior neural ectoderm (ANE) development is regulated by native inhibitors of bone morphogenic protein (BMP) and Nodal/Activin signaling,most published protocols of human embryonic stem cell differentiation to ANE have demonstrated a crucial role for Smad signaling in neural induction. The drawbacks of such protocols include the use of an embryoid body culture step and use of polypeptide secreted factors that are both expensive and,when considering clinical applications,have significant challenges in terms of good manufacturing practices compliancy. The use of small molecules to direct differentiation of pluripotent stem cells toward a specified lineage represents a powerful approach to generate specific cell types for further understanding of biological function,for understanding disease processes,for use in drug discovery,and finally for use in regenerative medicine. We therefore aimed to find controlled and reproducible animal-component-free differentiation conditions that would use only small molecules. Here,we demonstrate that pluripotent stem cells can be reproducibly and efficiently differentiated to PAX6(+) (a marker of neuroectoderm) and OCT4(-) (a marker of pluripotent stem cells) cells with the use of potent small inhibitors of the BMP and Activin/Nodal pathways,and in animal-component-free conditions,replacing the frequently used Noggin and SB431542. We also show by transcript analysis,both at the population level and for the first time at the single-cell level,that differentiated cells express genes characteristic for the development of ANE,in particular for the development of the future forebrain.
View Publication
Kim JJ et al. (JUN 2014)
Stem Cells 32 6 1468--1479
Discovery of consensus gene signature and intermodular connectivity defining self-renewal of human embryonic stem cells
Molecular markers defining self-renewing pluripotent embryonic stem cells (ESCs) have been identified by relative comparisons between undifferentiated and differentiated cells. Most of analysis has been done under a specific differentiation condition that may present significantly different molecular changes over others. Therefore,it is currently unclear if there are true consensus markers defining undifferentiated hESCs. To identify a set of key genes consistently altered during differentiation of hESCs regardless of differentiation conditions we have performed microarray analysis on undifferentiated hESCs (H1 and H9) and differentiated EB's and validated our results using publicly available expression array data sets. We constructed consensus modules by Weighted Gene Correlation Analysis (WGCNA) and discovered novel markers that are consistently present in undifferentiated hESCs under various differentiation conditions. We have validated top markers (downregulated: LCK,KLKB1 and SLC7A3; upregulated: RhoJ,Zeb2 and Adam12) upon differentiation. Functional validation analysis of LCK in self-renewal of hESCs by using LCK inhibitor or gene silencing with siLCK resulted in a loss of undifferentiation characteristics- morphological change,reduced alkaline phosphatase activity and pluripotency gene expression,demonstrating a potential functional role of LCK in self-renewal of hESCs. We have designated hESC markers to interactive networks in the genome,identifying possible interacting partners and showing how new markers relate to each other. Furthermore,comparison of these data sets with available datasets from iPSCs revealed that the level of these newly identified markers were correlated to the establishment of iPSCs,which may imply a potential role of these markers in gaining of cellular potency. Stem Cells 2014.
View Publication
Ang Y-S et al. (DEC 2016)
Cell 167 7 1734--1749.e22
Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis.
Mutation of highly conserved residues in transcription factors may affect protein-protein or protein-DNA interactions,leading to gene network dysregulation and human disease. Human mutations in GATA4,a cardiogenic transcription factor,cause cardiac septal defects and cardiomyopathy. Here,iPS-derived cardiomyocytes from subjects with a heterozygous GATA4-G296S missense mutation showed impaired contractility,calcium handling,and metabolic activity. In human cardiomyocytes,GATA4 broadly co-occupied cardiac enhancers with TBX5,another transcription factor that causes septal defects when mutated. The GATA4-G296S mutation disrupted TBX5 recruitment,particularly to cardiac super-enhancers,concomitant with dysregulation of genes related to the phenotypic abnormalities,including cardiac septation. Conversely,the GATA4-G296S mutation led to failure of GATA4 and TBX5-mediated repression at non-cardiac genes and enhanced open chromatin states at endothelial/endocardial promoters. These results reveal how disease-causing missense mutations can disrupt transcriptional cooperativity,leading to aberrant chromatin states and cellular dysfunction,including those related to morphogenetic defects.
View Publication
Disease-causing Mitochondrial Heteroplasmy Segregated within Induced Pluripotent Stem Cell Clones Derived from A MELAS Patient
Mitochondrial diseases display pathological phenotypes according to the mixture of mutant versus wild-type mitochondrial DNA (mtDNA),known as heteroplasmy. We herein examined the impact of nuclear reprogramming and clonal isolation of induced pluripotent stem cells (iPSC) on mitochondrial heteroplasmy. Patient-derived dermal fibroblasts with a prototypical mitochondrial deficiency diagnosed as MELAS demonstrated mitochondrial dysfunction with reduced oxidative reserve due to heteroplasmy at position G13513A in the ND5 subunit of complex I. Bioengineered iPSC clones acquired pluripotency with multi-lineage differentiation capacity and demonstrated reduction in mitochondrial density and oxygen consumption distinguishing them from the somatic source. Consistent with the cellular mosaicism of the original patient-derived fibroblasts,the MELAS-iPSC clones contained a similar range of mtDNA heteroplasmy of the disease-causing mutation with identical profiles in the remaining mtDNA. High-heteroplasmy iPSC clones were used to demonstrate that extended stem cell passaging was sufficient to purge mutant mtDNA,resulting in isogenic iPSC subclones with various degrees of disease-causing genotypes. Upon comparative differentiation of iPSC clones,improved cardiogenic yield was associated with iPSC clones containing lower heteroplasmy compared to isogenic clones with high heteroplasmy. Thus,mtDNA heteroplasmic segregation within patient-derived stem cell lines enables direct comparison of genotype/phenotype relationships in progenitor cells and lineage-restricted progeny,and indicates that cell fate decisions are regulated as a function of mtDNA mutation load. The novel nuclear reprogramming-based model system introduces a disease-in-a-dish tool to examine the impact of mutant genotypes for MELAS patients in bioengineered tissues and a cellular probe for molecular features of individual mitochondrial diseases.
View Publication
S. Bell et al. (JUL 2018)
Stem cell reports 11 1 183--196
Disruption of GRIN2B Impairs Differentiation in Human Neurons.
Heterozygous loss-of-function mutations in GRIN2B,a subunit of the NMDA receptor,cause intellectual disability and language impairment. We developed clonal models of GRIN2B deletion and loss-of-function mutations in a region coding for the glutamate binding domain in human cells and generated neurons from a patient harboring a missense mutation in the same domain. Transcriptome analysis revealed extensive increases in genes associated with cell proliferation and decreases in genes associated with neuron differentiation,a result supported by extensive protein analyses. Using electrophysiology and calcium imaging,we demonstrate that NMDA receptors are present on neural progenitor cells and that human mutations in GRIN2B can impair calcium influx and membrane depolarization even in a presumed undifferentiated cell state,highlighting an important role for non-synaptic NMDA receptors. It may be this function,in part,which underlies the neurological disease observed in patients with GRIN2B mutations.
View Publication