Ciampi O et al. (JUN 2016)
Stem Cell Research 17 1 130--139
Generation of functional podocytes from human induced pluripotent stem cells
Generating human podocytes in vitro could offer a unique opportunity to study human diseases. Here,we describe a simple and efficient protocol for obtaining functional podocytes in vitro from human induced pluripotent stem cells. Cells were exposed to a three-step protocol,which induced their differentiation into intermediate mesoderm,then into nephron progenitors and,finally,into mature podocytes. After differentiation,cells expressed the main podocyte markers,such as synaptopodin,WT1,α-Actinin-4,P-cadherin and nephrin at the protein and mRNA level,and showed the low proliferation rate typical of mature podocytes. Exposure to Angiotensin II significantly decreased the expression of podocyte genes and cells underwent cytoskeleton rearrangement. Cells were able to internalize albumin and self-assembled into chimeric 3D structures in combination with dissociated embryonic mouse kidney cells. Overall,these findings demonstrate the establishment of a robust protocol that,mimicking developmental stages,makes it possible to derive functional podocytes in vitro.
View Publication
Zhang P-WW et al. (JAN 2016)
Glia 64 1 63--75
Generation of GFAP::GFP astrocyte reporter lines from human adult fibroblast-derived iPS cells using zinc-finger nuclease technology.
Astrocytes are instrumental to major brain functions,including metabolic support,extracellular ion regulation,the shaping of excitatory signaling events and maintenance of synaptic glutamate homeostasis. Astrocyte dysfunction contributes to numerous developmental,psychiatric and neurodegenerative disorders. The generation of adult human fibroblast-derived induced pluripotent stem cells (iPSCs) has provided novel opportunities to study mechanisms of astrocyte dysfunction in human-derived cells. To overcome the difficulties of cell type heterogeneity during the differentiation process from iPSCs to astroglial cells (iPS astrocytes),we generated homogenous populations of iPS astrocytes using zinc-finger nuclease (ZFN) technology. Enhanced green fluorescent protein (eGFP) driven by the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter was inserted into the safe harbor adeno-associated virus integration site 1 (AAVS1) locus in disease and control-derived iPSCs. Astrocyte populations were enriched using Fluorescence Activated Cell Sorting (FACS) and after enrichment more than 99% of iPS astrocytes expressed mature astrocyte markers including GFAP,S100$\$,NFIA and ALDH1L1. In addition,mature pure GFP-iPS astrocytes exhibited a well-described functional astrocytic activity in vitro characterized by neuron-dependent regulation of glutamate transporters to regulate extracellular glutamate concentrations. Engraftment of GFP-iPS astrocytes into rat spinal cord grey matter confirmed in vivo cell survival and continued astrocytic maturation. In conclusion,the generation of GFAP::GFP-iPS astrocytes provides a powerful in vitro and in vivo tool for studying astrocyte biology and astrocyte-driven disease pathogenesis and therapy.
View Publication
Fuerstenau-Sharp M et al. (MAY 2015)
PloS one 10 5 e0126596
Generation of highly purified human cardiomyocytes from peripheral blood mononuclear cell-derived induced pluripotent stem cells.
Induced pluripotent stem (iPS) cells have an enormous potential for physiological studies. A novel protocol was developed combining the derivation of iPS from peripheral blood with an optimized directed differentiation to cardiomyocytes and a subsequent metabolic selection. The human iPS cells were retrovirally dedifferentiated from activated T cells. The subsequent optimized directed differentiation protocol yielded 30-45% cardiomyocytes at day 16 of differentiation. The derived cardiomyocytes expressed appropriate structural markers like cardiac troponin T,$\$-actinin and myosin light chain 2 (MLC2V). In a subsequent metabolic selection with lactate,the cardiomyocytes content could be increased to more than 90%. Loss of cardiomyocytes during metabolic selection were less than 50%,whereas alternative surface antibody-based selection procedures resulted in loss of up to 80% of cardiomyocytes. Electrophysiological characterization confirmed the typical cardiac features and the presence of ventricular,atrial and nodal-like action potentials within the derived cardiomyocyte population. Our combined and optimized protocol is highly robust and applicable for scalable cardiac differentiation. It provides a simple and cost-efficient method without expensive equipment for generating large numbers of highly purified,functional cardiomyocytes. It will further enhance the applicability of iPS cell-derived cardiomyocytes for disease modeling,drug discovery,and regenerative medicine.
View Publication
Varela I et al. (DEC 2014)
Cellular reprogramming 16 6 447--455
Generation of human $\$-thalassemia induced pluripotent cell lines by reprogramming of bone marrow-derived mesenchymal stromal cells using modified mRNA.
Synthetic modified mRNA molecules encoding pluripotency transcription factors have been used successfully in reprogramming human fibroblasts to induced pluripotent stem cells (iPSCs). We have applied this method on bone marrow-derived mesenchymal stromal cells (BM-MSCs) obtained from a patient with $$-thalassemia ($$-thal) with the aim to generate trangene-free $$-thal-iPSCs. Transfection of 10(4) BM-MSCs by lipofection with mRNA encoding the reprogramming factors Oct4,Klf4,Sox2,cMyc,and Lin28 resulted in formation of five iPSC colonies,from which three were picked up and expanded in $$-thal-iPSC lines. After 10 serial passages in vitro,$$-thal-iPSCs maintain genetic stability as shown by array comparative genomic hybridization (aCGH) and are capable of forming embryoid bodies in vitro and teratomas in vivo. Their gene expression profile compared to human embryonic stem cells (ESCs) and BM-MSCs seems to be similar to that of ESCs,whereas it differs from the profile of the parental BM-MSCs. Differentiation cultures toward a hematopoietic lineage showed the generation of CD34(+) progenitors up to 10%,but with a decreased hematopoietic colony-forming capability. In conclusion,we report herein the generation of transgene-free $$-thal-iPSCs that could be widely used for disease modeling and gene therapy applications. Moreover,it was demonstrated that the mRNA-based reprogramming method,used mainly in fibroblasts,is also suitable for reprogramming of human BM-MSCs.
View Publication
Liu L et al. (OCT 2016)
Stem cell research 17 3 584--586
Generation of human embryonic stem cell line chHES-472 from abnormal embryos diagnosed with Spinocerebellar ataxia type 3.
Spinocerebellar ataxia type3 (SCA3) is an autosomal dominant neurodegenerative disorder. Human embryonic stem cell line chHES-472 was derived from abnormal embryo donated by SCA3 patient after preimplantation genetic diagnosis (PGD) treatment. This cell line had a normal karyotype and retained the disease-causing mutant in ATXN3 gene. Characteristic tests proved that the embryonic stem cell line presented typical markers of pluripotency and had the capability to form the three germlayers in vivo.
View Publication
Shetty DK and Inamdar MS (MAR 2016)
Stem Cell Research 16 2 290--292
Generation of human embryonic stem cell line expressing a red fluorescent protein: BJNhem20-pCAG-tdTomato
Human embryonic stem cell line BJNhem20-pCAG-tdTomato was generated using non-viral method. The construct pCAG-tdTomato was transfected using microporation procedure. This fluorescent hESC line can help to study heterogeneity within individual cells in hESC colonies by enabling live tracking of their growth,migration and differentiation properties. This cell line also serves as a resource for additional transgene introduction/knock-out/knock-in generation in a fluorescent background and allows ease of analysis in studies involving cell mixing.
View Publication
Zhou J et al. (AUG 2016)
Neurochemical Research 41 8 2065--2074
Generation of Human Embryonic Stem Cell Line Expressing zsGreen in Cholinergic Neurons Using CRISPR/Cas9 System
Lineage specific human embryonic stem cell (hESC) reporter cell line is a versatile tool for biological studies on real time monitoring of differentiation,physiological and biochemical features of special cell types and pathological mechanism of disease. Here we report the generation of ChAT-zsGreen reporter hESC line that express zsGreen under the control of the choline acetyltransferase (ChAT) promoter using CRISPR (Clustered Regularly Interspersed Short Palindromic Repeats)/Cas9 system. We show that the ChAT-zsGreen hESC reporter cell lines retain the features of undifferentiated hESC. After cholinergic neuronal differentiation,cholinergic neurons were clearly labeled with green fluorescence protein (zsGreen). The ChAT-zsGreen reporter hESC lines are invaluable not only for the monitoring cholinergic neuronal differentiation but also for study physiological and biochemical hallmarks of cholinergic neurons.
View Publication
Ouyang Q et al. (NOV 2016)
Stem cell research 17 3 634--636
Generation of human embryonic stem cells from abnormal blastocyst diagnosed with adrenoleukodystrophy.
Human embryonic stem cell (hESC) line chHES-480 was derived from abnormal blastocyst diagnosed with adrenoleukodystrophy (ALD) after preimplantation genetic diagnosis (PGD) treatment. DNA sequencing analysis confirmed that chHES-480 cell line carried a hemizygous missense mutation c.1825GtextgreaterA(p.Glu609Lys) of ABCD1 gene. Characteristic tests proved that the chHES-480 cell line presented typical markers of pluripotency and had the capability to form the three germ layers both in vitro and in vivo.
View Publication
Varga E et al. (OCT 2016)
Stem cell research 17 3 514--516
Generation of human induced pluripotent stem cell (iPSC) line from an unaffected female carrier of Mucopolysaccharidosis type II (MPS II) disorder.
Peripheral blood was collected from a 39-year-old unaffected female carrier of an X-linked recessive mutation of Iduronate 2-sulfatase gene (NM000202.7(IDS):c.85CtextgreaterT) causing MPS II (OMIM 309900). Peripheral blood mononuclear cells (PBMCs) were reprogrammed by lentiviral delivery of a self-silencing hOKSM polycistronic vector. The pluripotency of iPSC line was confirmed by the expression of pluripotency-associated markers and in vitro spontaneous differentiation towards the 3 germ layers. The iPSC showed normal karyotype. The line offers a good platform to study MPS II pathophysiology,for drug testing,early biomarker discovery and gene therapy studies.
View Publication
Kamata M et al. (NOV 2010)
Human gene therapy 21 11 1555--67
Generation of human induced pluripotent stem cells bearing an anti-HIV transgene by a lentiviral vector carrying an internal murine leukemia virus promoter.
The recent development of induced pluripotent stem cells (iPSCs) by ectopic expression of defined reprogramming factors offers enormous therapeutic opportunity. To deliver these factors,murine leukemia virus (MLV)-based vectors have been broadly used in the setting of hematopoietic stem cell transplantation. However,MLV vectors have been implicated in malignancy induced by insertional mutagenesis,whereas lentiviral vectors have not. Furthermore,the infectivity of MLV vectors is limited to dividing cells,whereas lentiviral vectors can also transduce nondividing cells. One important characteristic of MLV vectors is a self-silencing property of the promoter element in pluripotent stem cells,allowing temporal transgene expression in a nonpluripotent state before iPSC derivation. Here we test iPSC generation using a novel chimeric vector carrying a mutant MLV promoter internal to a lentiviral vector backbone,thereby containing the useful properties of both types of vectors. Transgene expression of this chimeric vector was highly efficient compared with that of MLV vectors and was silenced specifically in human embryonic stem cells. Human fetal fibroblasts transduced with the vector encoding each factor were efficiently reprogrammed into a pluripotent state,and these iPSCs had potential to differentiate into a variety of cell types. To explore the possibility of iPSCs for gene therapy,we established iPSC clones expressing a short hairpin RNA (shRNA) targeting chemokine receptor 5 (CCR5),the main coreceptor for HIV-1. Using a reporter construct for CCR5 expression,we confirmed that CCR5 shRNA was expressed and specifically knocked down the reporter expression in iPSCs. These data indicate that our chimeric lentiviral vector is a valuable tool for generation of iPSCs and the combination with vectors encoding transgenes allows for rapid establishment of desired genetically engineered iPSC lines.
View Publication
Cai J et al. (APR 2010)
Journal of Biological Chemistry 285 15 11227--34
Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells
The umbilical cord and placenta are extra-embryonic tissues of particular interest for regenerative medicine. They share an early developmental origin and are a source of vast amounts of cells with multilineage differentiation potential that are poorly immunogenic and without controversy. Moreover,these cells are likely exempt from incorporated mutations when compared with juvenile or adult donor cells such as skin fibroblasts or keratinocytes. Here we report the efficient generation of induced pluripotent stem cells (iPSCs) from mesenchymal cells of the umbilical cord matrix (up to 0.4% of the cells became reprogrammed) and the placental amniotic membrane (up to 0.1%) using exogenous factors and a chemical mixture. iPSCs from these 2 tissues homogeneously showed human embryonic stem cell (hESC)-like characteristics including morphology,positive staining for alkaline phosphatase,normal karyotype,and expression of hESC-like markers including Nanog,Rex1,Oct4,TRA-1-60,TRA-1-80,SSEA-3,and SSEA-4. Selected clones also formed embryonic bodies and teratomas containing derivatives of the 3 germ layers,and could as well be readily differentiated into functional motor neurons. Among other things,our cell lines may prove useful for comparisons between iPSCs derived from multiple tissues regarding the extent of the epigenetic reprogramming,differentiation ability,stability of the resulting lineages,and the risk of associated abnormalities.
View Publication